20 Risks that Beset Data Programmes

Data Programme Risks

This article draws extensively on elements of the framework I use to both highlight and manage risks on data programmes. It has its genesis in work that I did early in 2012 (but draws on experience from the years before this). I have tried to refresh the content since then to reflect new thinking and new developments in the data arena.
 
 
Introduction

What are my motivations in publishing this article? Well I have both designed and implemented data and information programmes for over 17 years. In the majority of cases my programme work has been a case of executing a data strategy that I had developed myself [1]. While I have generally been able to steer these programmes to a successful outcome [2], there have been both bumps in the road and the occasional blind alley, requiring a U-turn and another direction to be selected. I have also been able to observe data programmes that ran in parallel to mine in different parts of various organisations. Finally, I have often been asked to come in and address issues with an existing data programme; something that appears to happens all too often. In short I have seen a lot of what works and what does not work. Having also run other types of programmes [3], I can also attest to data programmes being different. Failure to recognise this difference and thus approaching a data programme just like any other piece of work is one major cause of issues [4].

Before I get into my list proper, I wanted to pause to highlight a further couple of mistakes that I have seen made more than once; ones that are more generic in nature and thus don’t appear on my list of 20 risks. The first is to assume that the way that an organisation’s data is controlled and leveraged can be improved in a sustainable way by just kicking off a programme. What is more important in my experience is to establish a data function, which will then help with both the governance and exploitation of data. This data function, ideally sitting under a CDO, will of course want to initiate a range of projects, from improving data quality, to sprucing up reporting, to establishing better analytical capabilities. Best practice is to gather these activities into a programme, but things work best if the data function is established first, owns such a programme and actively partakes in its execution.

Data is for life...

As well as the issue of ongoing versus transitory accountability for data and the undoubted damage that poorly coordinated change programmes can inflict on data assets, another driver for first establishing a data function is that data needs will always be there. On the governance side, new systems will be built, bought and integrated, bringing new data challenges. On the analytical side, there will always be new questions to be answered, or old ones to be reevaluated. While data-centric efforts will generate many projects with start and end dates, the broad stream of data work continues on in a way that, for example, the implementation of a new B2C capability does not.

The second is to believe that you will add lasting value by outsourcing anything but targeted elements of your data programme. This is not to say that there is no place for such arrangements, which I have used myself many times, just that one of the lasting benefits of gimlet-like focus on data is the IP that is built up in the data team; IP that in my experience can be leveraged in many different and beneficial ways, becoming a major asset to the organisation [5].

Having made these introductory comments, let’s get on to the main list, which is divided into broadly chronological sections, relating to stages of the programme. The 10 risks which I believe are either most likely to materialise, or which will probably have the greatest impact are highlighted in pale yellow.
 
 
Up-front Risks

In the beginning

Risk Potential Impact
1. Not appreciating the size of work for both business and technology resources. Team is set up to fail – it is neither responsive enough to business needs (resulting in yet more “unofficial” repositories and additional fragmentation), nor is appropriate progress is made on its central objective.
2. Not establishing a dedicated team. The team never escapes from “the day job” or legacy / BAU issues; the past prevents the future from being built.
3. Not establishing a unified and collaborative team. Team is plagued by people pursuing their own agendas and trashing other people’s approaches, this consumes management time on non-value-added activities, leads to infighting and dissipates energy.
4. Staff lack skills and prior experience of data programmes. Time spent educating people rather than getting on with work. Sub-optimal functionality, slippages, later performance problems, higher ongoing support costs.
5. Not establishing an appropriate management / governance structure. Programme is not aligned with business needs, is not able to get necessary time with business users and cannot negotiate the inevitable obstacles that block its way. As a result, the programme gets “stuck in the mud”.
6. Failing to recognise ongoing local needs when centralising. Local business units do not have their pressing needs attended to and so lose confidence in the programme and instead go their own way. This leads to duplication of effort, increased costs and likely programme failure.

With risk 2 an analogy is trying to build a house in your spare time. If work can only be done in evenings or at the weekend, then this is going to take a long time. Nevertheless organisations too frequently expect data programmes to be absorbed in existing headcount and fitted in between people’s day jobs.

We can we extend the building metaphor to cover risk 4. If you are going to build your own house, it would help that you understand carpentry, plumbing, electricals and brick-laying and also have a grasp on the design fundamentals of how to create a structure that will withstand wind rain and snow. Too often companies embark on data programmes with staff who have a bit of a background in reporting or some related area and with managers who have never been involved in a data programme before. This is clearly a recipe for disaster.

Risk 5 reminds us that governance is also important – both to ensure that the programme stays focussed on business needs and also to help the team to negotiate the inevitable obstacles. This comes back to a successful data programme needing to be more than just a technology project.
 
 
Programme Execution Risks

Programme execution

Risk Potential Impact
7. Poor programme management. The programme loses direction. Time is expended on non-core issues. Milestones are missed. Expenditure escalates beyond budget.
8. Poor programme communication. Stakeholders have no idea what is happening [6]. The programme is viewed as out of touch / not pertinent to business issues. Steering does not understand what is being done or why. Prospective users have no interest in the programme.
9. Big Bang approach. Too much time goes by without any value being created. The eventual Big Bang is instead a damp squib. Large sums of money are spent without any benefits.
10. Endless search for the perfect solution / adherence to overly theoretical approaches. Programme constantly polishes rocks rather than delivering. Data models reflect academic purity rather than real-world performance and maintenance needs.
11. Lack of focus on interim deliverables. Business units become frustrated and seek alternative ways to meet their pressing needs. This leads to greater fragmentation and reputational damage to programme.
12. Insufficient time spent understanding source system data and how data is transformed as it flows between systems. Data capabilities that do not reflect business transactions with fidelity. There is inconsistency with reports directly drawn from source systems. Reconciliation issues arise (see next point).
13. Poor reconciliation. If analytical capabilities do not tell a consistent story, they will not be credible and will not be used.
14. Strong approach to data quality. Data facilities are seen as inaccurate because of poor data going into them. Data facilities do not match actual business events due to either massaging of data or exclusion of transactions with invalid attributes.

Probably the single most common cause of failure with data programmes – and indeed or ERP projects and acquisitions and any other type of complex endeavour – is risk 7, poor programme management. Not only do programme managers have to be competent, they should also be steeped in data matters and have a good grasp of the factors that differentiate data programmes from more general work.

Relating to the other highlighted risks in this section, the programme could spend two years doing work without surfacing anything much and then, when they do make their first delivery, this is a dismal failure. In the same vein, exclusive focus on strategic capabilities could prevent attention being paid to pressing business needs. At the other end of the spectrum, interim deliveries could spiral out of control, consuming all of the data team’s time and meaning that the strategic objective is never reached. A better approach is that targeted and prioritised interims help to address pressing business needs, but also inform more strategic work. From the other perspective, progress on strategic work-streams should be leveraged whenever it can be, perhaps in less functional manners that the eventual solution, but good enough and also helping to make sure that the final deliveries are spot on [7].
 
 
User Requirement Risks

Dear Santa

Risk Potential Impact
15. Not enough up-front focus on understanding key business decisions and the information necessary to take them. Analytic capabilities do not focus on what people want or need, leading to poor adoption and benefits not being achieved.
16. In the absence of the above, the programme becoming a technology-driven one. The business gets what IT or Change think that they need, not what is actually needed. There is more focus on shiny toys than on actionable information. The programme forgets the needs of its customers.
17. A focus on replicating what the organisation already has but in better tools, rather than creating what it wants. Beautiful data visualisations that tell you close to nothing. Long lists of existing reports with their fields cross-referenced to each other and a new solution that is essentially the lowest common denominator of what is already in place; a step backwards.

The other most common reasons for data programme failure is a lack of focus on user needs and insufficient time spent with business people to ensure that systems reflect their requirements [8].
 
 
Integration Risk

Lego

Risk Potential Impact
18. Lack of leverage of new data capabilities in front-end / digital systems. These systems are less effective. The data team is jealous about its capabilities being the only way that users should get information, rather than adopting a more pragmatic and value-added approach.

It is important for the data team to realise that their work, however important, is just one part of driving a business forward. Opportunities to improve other system facilities by the leverage of new data structures should be taken wherever possible.
 
 
Deployment Risks

Education

Risk Potential Impact
19. Education is an afterthought, training is technology- rather than business-focused. People neither understand the capabilities of new analytical tools, nor how to use them to derive business value. Again this leads to poor adoption and little return on investment.
20. Declaring success after initial implementation and training. Without continuing to water the immature roots, the plant withers. Early adoption rates fall and people return to how they were getting information pre-launch. This means that the benefits of the programme not realised.

Finally excellent technical work needs to be complemented with equal attention to business-focussed education, training using real-life scenarios and assiduous follow up. These things will make or break the programme [9].
 
 
Summary.

Of course I don’t claim that the above list is exhaustive. You could successfully mitigate all of the above risks on your data programme, but still get sunk by some other unforeseen problem arising. There is a need to be flexible and to adapt to both events and how your organisation operates; there are no guarantees and no foolproof recipes for success [10].

My recommendation to data professionals is to develop your own approach to risk management based on your own experience, your own style and the culture within which you are operating. If just a few of the items on my list of risks can be usefully amalgamated into this, then I will feel that this article has served its purpose. If you are embarking on a data programme, maybe your first one, then be warned that these are hard and your reserves of perseverance will be tested. I’d suggest leveraging whatever tools you can find in trying to forge ahead.

It is also maybe worth noting that, somewhat contrary to my point that data programmes are different, a few of the risks that I highlight above could be tweaked to apply to more general programmes as well. Hopefully the things that I have learnt over the last couple of decades of running data programmes will be something that can be of assistance to you in your own work.
 


 
Notes

 
[1]
 
For my thoughts on developing data (or interchangeably) information strategies see:

  1. Forming an Information Strategy: Part I – General Strategy
  2. Forming an Information Strategy: Part II – Situational Analysis and
  3. Forming an Information Strategy: Part III – Completing the Strategy

or the CliffsNotes versions of these on LinkedIn:

  1. Information Strategy: 1) General Strategy
  2. Information Strategy: 2) Situational Analysis and
  3. Information Strategy: 3) Completing the Strategy
 
[2]
 
Indeed sometimes an award-winning one.
 
[3]
 
An abridged list would include:

  • ERP design, development and implementation
  • ERP selection and implementation
  • CRM design, development and implementation
  • CRM selection and implementation
  • Integration of acquired companies
  • Outsourcing of systems maintenance and support
 
[4]
 
For an examination of this area you can start with A more appropriate metaphor for Business Intelligence projects. While written back in 2008-9 the content of this article is as pertinent today as it was back then.
 
[5]
 
I cover this area in greater detail in Is outsourcing business intelligence a good idea?
 
[6]
 
Stakeholder

Probably a bad idea to make this stakeholder unhappy (see also Themes from a Chief Data Officer Forum – the 180 day perspective, note [3]).

 
[7]
 
See Vision vs Pragmatism, Holistic vs Incremental approaches to BI and Tactical Meandering for further background on this area.
 
[8]
 
This area is treated in the strategy articles appearing in note [1] above. In addition, some potential approaches to elements of effective requirements gathering are presented in Scaling-up Performance Management and Developing an international BI strategy.
 
[9]
 
Of pertinence here is my trilogy on the cultural transformation aspects of information programmes:

  1. Marketing Change
  2. Education and cultural transformation
  3. Sustaining Cultural Change
 
[10]
 
Something I stress forcibly in Recipes for Success?

 

 

Bumps in the Road

Bumps in the road

The above image appears in my updated [1] seminar deck Data Management, Analytics and People: An Eternal Golden Braid. It is featured on a slide titled “Why Data Management? – The negative case” [2]. So what was the point that I was so keen to make?

Well the whole slide looks like this…

Why Data Management? (Click to view a full-size version as a PDF in a new window).

…and the image on the left relates most directly to the last item of bulleted text on the right-hand side [3].
 
 
An Introductory Anecdote

Roadworks

Before getting into the meat of this article, an aside which may illuminate where I am coming from. I currently live in London, a city where I was born and to which I returned after a sojourn in Cambridge while my wife completed her PhD. Towards the end of my first period in London, we lived on a broad, but one-way road in West London. One day we received notification that the road was going to be resurfaced and moving our cars might be a useful thing to consider. The work was duly carried out and our road now had a deep black covering of fresh asphalt [4], criss-crossed by gleaming and well-defined dashed white lines demarking parking bays. Within what seemed like days, but was certainly no more than a few weeks, roadworks signs reappeared on our road, together with red and white fencing, a digger and a number of people with pneumatic drills [5] and shovels. If my memory serves me well, it was the local water company (Thames Water) who visited our road first.

The efforts of the Thames Water staff, while no doubt necessary and carried out professionally, rather spoiled our pristine road cover. I guess these things happen and coordination between local government, private firms and the sub-contractors that both employ cannot be easy [6]. However what was notable was that things did not stop with Thames Water. Over the next few months the same stretch of road was also dug up by both the Electricity and Gas utilities. There was a further set of roadworks on top of these, but my memory fails me on which organisation carried these out and for what purpose [7]; we are talking about events that occurred over eight years ago here.

More roadworks

The result of all this uncoordinated work was a previously pristine road surface now pock-marked by a series of new patches of asphalt, or maybe other materials; they certainly looked different and (as in the above photo) had different colours and grains. Several of these patches of new road covering overlapped each other; that is one hole redug sections previously excavated by earlier holes. Also the new patches of road surface were often either raised or depressed from the main run of asphalt, leading to a very uneven terrain. I have no idea how much it cost to repave the road in the first instance, but a few months of roadworks pretty much buried the repaving and led to a road whose surface was the opposite of smooth and consistent. I’d go so far as to say that the road was now in considerably worse condition than before the initial repaving. In any case, it could be argued that the money spent on the repaving was, for all intents and purposes, wasted.

After all this activity, our road was somewhat similar to the picture at the top of this article, but its state was much worse with more extensive patching and more overlapping layers. To this day I rather wish I had taken a photograph, which would also have saved me some money on stock photos!

I understand that each of the roadworks was in support of something that was probably desirable. For example, better sewerage, or maintenance to gas supplies which might otherwise have become dangerous. My assumption is that all of the work that followed on from the repaving needed to be done and that each was done at least as well as it had to be. Probably most of these works were completed on time and on budget. However, from the point of view of the road as a whole, the result of all these unconnected and uncoordinated works was a substantial deterioration in both its appearance and utility.
Lots of good can equal bad (for certain values of 'good')
In summary, the combination of a series of roadworks, each of which either needed to be done or led to an improvement in some area, resulted in the environment in which they were carried out becoming degraded and less fit-for-purpose. A series of things which could be viewed as beneficial in isolation were instead deleterious in aggregate. At this point, the issue that I wanted to highlight in the data world is probably swimming into focus for many readers.
 
 
The Entropy of a Data Asset exposed to Change tends to a Maximum [8]

Entropy

Returning to the slide I reproduce above, my assertion – which has been borne out during many years of observing the area – is that Change Programmes and Projects, if not subject to appropriately rigorous Data Governance, inevitably led to the degradation of data assets over time.

Here both my roadworks anecdote and the initial photograph illustrate the point that I am looking to make. Over the last decade or so, the delivery of technological change has evolved [9] to the point where many streams of parallel work are run independently of each other with each receiving very close management scrutiny in order to ensure delivery on-time and on-budget [10]. It should be recognised that some of this shift in modus operandi has been as a result of IT departments running projects that have spiralled out of control, or where delivery has been significantly delayed or compromised. The gimlet-like focus of Change on delivery “come Hell or High-water” represents the pendulum swinging to the other extreme.

Pendulum

What this shift in approach means in practice is that – as is often the case – when things go wrong or take longer than anticipated [11], areas of work are de-scoped to secure delivery dates. In my experience, 9 times out of 10 one of the things that gets thrown out is data-related work; be that not bothering to develop reporting on top of new systems, not integrating new data into existing repositories, not complying with data standards, or not implementing master data management.

As well as the danger of skipping necessary data related work, if some data-related work is actually undertaken, then corners may be cut to meet deadlines and budgets. It is not atypical for instance that a Change Programme, while adding their new capabilities to interfaces or ETL, compromises or overwrites existing functionality. This can mean that data-centric code is in a worse state after a Change Programme than before. My roadworks anecdote begins to feel all too apt a metaphor to employ.

Looking more broadly at Change Programmes, even without the curse of de-scopes, their focus is seldom data and the expertise of Change staff is not often in data matters. Because of this, such work can indeed seem to be analogous to continually digging up the same stretch of road for different purposes, combined with patching things up again in a manner that can sometimes be barely adequate. Extending our metaphor [12], the result of Change that is not controlled from a data point of view can be a landscape with lumps, bumps and pot-holes. Maybe the sewer was re-laid on time and to budget, but the road has been trashed in the process. Perhaps a new system was shoe-horned in to production, but rendered elements of an Analytical Repository useless in the process.

Data Governance (well actually Bank Governance, Data Governance involves less impressive facades)

Avoiding these calamities is the central role of Data Governance. What these examples also stress is that, rather than the dry, policy-based area that Data Governance is often assumed to be, it must be more dynamic and much more engaged in Change Portfolios. Such engagement should ideally be early and in a helpful manner, not late and in a policing role.

The analogy I have employed here also explains why leveraging existing Governance arrangements to add in a Data Governance dimension seldom works. This would be like asking the contractors engaged in roadworks to be extra careful to liaise with each other. This won’t work as there is no real incentive for such collaboration, the motivation of getting their piece of work done quickly and cheaply will trump other considerations. Instead some independent oversight is required. Like any good “regulator” this will work best if Data Governance professionals seek to be part of the process and focus on improving it. The alternative of simply pointing out problems after the fact adds much less business value.
 
 
And Finally

Sherlock

In A Study in Scarlet John Watson reads an article, which turns out to have been written by his illustrious co-lodger. A passage is as follows:

“From a drop of water,” said the writer, “a logician could infer the possibility of an Atlantic or a Niagara without having seen or heard of one or the other. So all life is a great chain, the nature of which is known whenever we are shown a single link of it.”

While I don’t claim to have the same acuity of mind as Conan-Doyle’s most famous creation, I can confirm that you can learn a lot about the need for Data Governance by simply closely observing the damage done by roadworks.
 


 Notes

 
[1]
 
I have updated my latest deck to use a different photo due to a dispute with the company I purchased the original photo from.
 
[2]
 
Which you may be glad to hear is followed directly by one titled “Why Data Management? – The positive case”.
 
[3]
 
It may be noted that I am going through a minimalist phase in my decks for public speaking. Indeed I did toy with having a deck consisting primarily of images before chickening out. Of course one benefit of being text-light is that you can focus on different elements and tell different stories for different audiences (see Presenting in Public).
 
[4]
 
Blacktop.
 
[5]
 
Jackhammers.
 
[6]
 
Indeed sometime in the late 1980s or early 1990s I was approached by one of the big consultancies about a job on a project to catalogue all proposed roadworks across London in an Oracle database. The objective of this was to better coordinate roadworks. I demurred and I believe that the project was unsuccessful, certainly by the evidence of what happened to our road.
 
[7]
 
It could well have been Thames Water again – the first time sewers, the second household water supply. It might have been British Telecom, but it probably wasn’t a cable company as they had been banned from excavations in Westminster after failing to make good after previous installations.
 
[8]
 
Rudolf Clausius in 1865, with reference to the Second Law of Thermodynamics.
 
[9]
 
As with the last time I used this word (see the notes section of Alphabet Soup) and also as applies with the phenomenon in the narual world, evolution implies change, but not necessarily always improvement.
 
[10]
 
Or perhaps more realistically to ensure that delays are minimised and cost overruns managed downwards.
 
[11]
 
Frequently it must be added because of either insufficient, or the wrong type of up-front analysis, or because a delivery timeframe was agreed based on some external factor rather than on what could practically be delivered in the time available. Oftentimes both factors are present and compound each other. The overall timetable is not based on any concrete understanding of what is to be done and analysis is either curtailed to meet timeframes, or – more insidiously – its findings are massaged to fit the desired milestones.
 
[12]
 
Hopefully not over-extending it.

 

 

Themes from a Chief Data Officer Forum – the 180 day perspective

Tempus fugit

The author would like to acknowledge the input and assistance of his fellow delegates, both initially at the IRM(UK) CDO Executive Forum itself and later in reviewing earlier drafts of this article. As ever, responsibility for any errors or omissions remains mine alone.
 
 
Introduction

Time flies as Virgil observed some 2,045 years ago. A rather shorter six months back I attended the inaugural IRM(UK) Chief Data Officer Executive Forum and recently I returned for the second of what looks like becoming biannual meetings. Last time the umbrella event was the IRM(UK) Enterprise Data and Business Intelligence Conference 2015 [1], this session was part of the companion conference: IRM(UK) Master Data Management Summit / and Data Governance Conference 2016.

This article looks to highlight some of the areas that were covered in the forum, but does not attempt to be exhaustive, instead offering an impressionistic view of the meeting. One reason for this (as well as the author’s temperament) is that – as previously – in order to allow free exchange of ideas, the details of the meeting are intended to stay within the confines of the room.

Last November, ten themes emerged from the discussions and I attempted to capture these over two articles. The headlines appear in the box below:

Themes from the previous Forum:
  1. Chief Data Officer is a full-time job
  2. The CDO most logically reports into a commercial area (CEO or COO)
  3. The span of CDO responsibilities is still evolving
  4. Data Management is an indispensable foundation for Analytics, Visualisation and Statistical Modelling
  5. The CDO is in the business of driving cultural change, not delivering shiny toys
  6. While some CDO roles have their genesis in risk mitigation, most are focussed on growth
  7. New paradigms are data / analytics-centric not application-centric
  8. Data and Information need to be managed together
  9. Data Science is not enough
  10. Information is often a missing link between Business and IT strategies

One area of interest for me was how things had moved on in the intervening months and I’ll look to comment on this later.

By way of background, some of the attendees were shared with the November 2015 meeting, but there was also a smattering of new faces, including the moderator, Peter Campbell, President of DAMA’s Belgium and Luxembourg chapter. Sectors represented included: Distribution, Extractives, Financial Services, and Governmental.

The discussions were wide ranging and perhaps less structured than in November’s meeting, maybe a facet of the familiarity established between some delegates at the previous session. However, there were four broad topics which the attendees spent time on: Management of Change (Theme 5); Data Privacy / Trust; Innovation; and Value / Business Outcomes.

While clearly the second item on this list has its genesis in the European Commission’s recently adopted General Data Protection Regulation (GDPR [2]), it is interesting to note that the other topics suggest that some elements of the CDO agenda appear to have shifted in the last six months. At the time of the last meeting, much of what the group talked about was foundational or even theoretical. This time round there was both more of a practical slant to the conversation, “how do we get things done?” and a focus on the future, “how do we innovate in this space?”

Perhaps this also reflects that while CDO 1.0s focussed on remedying issues with data landscapes and thus had a strong risk mitigation flavour to their work, CDO 2.0s are starting to look more at value-add and delivering insight (Theme 6). Of course some organisations are yet to embark on any sort of data-related journey (CDO 0.0 maybe), but in the more enlightened ones at least, the CDO’s focus is maybe changing, or has already changed (Theme 3).

Some flavour of the discussions around each of the above topics is provided below, but as mentioned above, these observations are both brief and impressionistic:
 
 
Management of Change

Escher applies to most aspects of human endeavour

The title of Managing Change has been chosen (by the author) to avoid any connotations of Change Management. It was recognised by the group that there are two related issues here. The first is the organisational and behavioural change needed to both ensure that data is fit-for-purpose and that people embrace a more numerical approach to decision-making; perhaps this area is better described as Cultural Transformation. The second is the fact (also alluded to at the previous forum) that Change Programmes tend to have the effect of degrading data assets over time, especially where monetary or time factors lead data-centric aspects of project to be de-scoped.

On Cultural Transformation, amongst a number of issues discussed, the need to answer the question “What’s in it for me?” stood out. This encapsulates the human aspect of driving change, the need to engage with stakeholders [3] (at all levels) and the importance of sound communication of what is being done in the data space and – more importantly – why. These are questions to which an entire sub-section of this blog is devoted.

On the potentially deleterious impact of Change [4] on data landscapes, it was noted that whatever CDOs build, be these technological artefacts or data-centric processes, they must be designed to be resilient in the face of both change and Change.
 
 
Data Privacy / Trust

Data Privacy

As referenced above, the genesis of this topic was GDPR. However, it was interesting that the debate extended from this admittedly important area into more positive territory. This related to the observation that the care with which an organisation treats its customers’ or business partners’ data (and the level of trust which this generates) can potentially become a differentiator or even a source of competitive advantage. It is good to report an essentially regulatory requirement possibly morphing into a more value-added set of activities.
 
 
Innovation

Innovation

It might be expected that discussions around this topic would focus on perennials such as Big Data or Advanced Analytics. Instead the conversation was around other areas, such as distributed / virtualised data and the potential impact of Block Chain technology [5] on Data Management work. Inevitably The Internet of Things [6] also featured, together with the ethical issues that this can raise. Other areas discussed were as diverse as the gamification of Data Governance and Social Physics, so we cast the net widely.
 
 
Value / Business Outcomes

Business Value

Here we have the strongest link back into the original ten themes (specifically Theme 6). Of course the acme of data strategies is of little use if it does not deliver positive business outcomes. In many organisations, focus on just remediating issues with the current data landscape could consume a massive chunk of overall Change / IT expenditure. This is because data issues generally emanate from a wide variety of often linked and frequently long-standing organisational weaknesses. These can be architectural, integrational, procedural, operational or educational in nature. One of the challenges for CDOs everywhere is how to parcel up their work in a way that adds value, gets things done and is accretive to both the overall Business and Data strategies (which are of course intimately linked as per Theme 10). There is also the need to balance foundational work with more tactical efforts; the former is necessary for lasting benefits to be secured, but the latter can showcase the value of Data Management and thus support further focus on the area.
 
 
While the risk aspect of data issues gets a foot in the door of the Executive Suite, it is only by demonstrating commercial awareness and linking Data Management work to increased business value that any CDO is ever going to get traction. (Theme 6).
 


 
The next IRM(UK) CDO Executive Forum will take place on 9th November 2016 in London – if you would like to apply for a place please e-mail jeremy.hall@irmuk.co.uk.
 


 
Notes

 
[1]
 
I’ll be speaking at IRM(UK) ED&BI 2016 in November. Book early to avoid disappointment!
 
[2]
 
Wikipedia offers a digestible summary of the regulation here. Anyone tempted to think this is either a parochial or arcane area is encouraged to calculate what the greater of €20 million and 4% of their organisation’s worldwide turnover might be and then to consider that the scope of the Regulation covers any company (regardless of its domicile) that processes the data of EU residents.
 
[3]
 
I’ve been itching to use this classic example of stakeholder management for some time:

Rupert Edmund Giles - I'll be happy if just one other person gets it.

 
[4]
 
The capital “c” is intentional.
 
[5]
 
Harvard Business Review has an interesting and provocative article on the subject of Block Chain technology.
 
[6]
 
GIYF

 

 

Trouble at the top

IRM MDM/DG

Several weeks back now, I presented at IRM’s collocated European Master Data Management Summit and Data Governance Conference. This was my second IRM event, having also spoken at their European Data Warehouse and Business Intelligence Conference back in 2010. The conference was impeccably arranged and the range of speakers was both impressive and interesting. However, as always happens to me, my ability to attend meetings was curtailed by both work commitments and my own preparations. One of these years I will go to all the days of a seminar and listen to a wider variety of speakers.

Anyway, my talk – entitled Making Business Intelligence an Integral part of your Data Quality Programme – was based on themes I had introduced in Using BI to drive improvements in data quality and developed in Who should be accountable for data quality?. It centred on the four-pillar framework that I introduced in the latter article (yes I do have a fetish for four-pillar frameworks as per):

The four pillars of improved data quality

Given my lack of exposure to the event as a whole, I will restrict myself to writing about a comment that came up in the question section of my slot. As per my article on presenting in public, I try to always allow time at the end for questions as this can often be the most interesting part of the talk; for delegates and for me. My IRM slot was 45 minutes this time round, so I turned things over to the audience after speaking for half-an-hour.

There were a number of good questions and I did my best to answer them, based on past experience of both what had worked and what had been less successful. However, one comment stuck in my mind. For obvious reasons, I will not identify either the delegate, or the organisation that she worked for; but I also had a brief follow-up conversation with her afterwards.

She explained that her organisation had in place a formal data governance process and that a lot of time and effort had been put into communicating with the people who actually entered data. In common with my first pillar, this had focused on educating people as to the importance of data quality and how this fed into the organisation’s objectives; a textbook example of how to do things, on which the lady in question should be congratulated. However, she also faced an issue; one that is probably more common than any of us information professionals would care to admit. Her problem was not at the bottom, or in the middle of her organisation, but at the top.

So how many miles per gallon do you get out of that?

In particular, though data governance and a thorough and consistent approach to both the entry of data and transformation of this to information were all embedded into the organisation; this did not prevent the leaders of each division having their own people take the resulting information, load it into Excel and “improve” it by “adjusting anomalies”, “smoothing out variations”, “allowing for the impact of exceptional items”, “better reflecting the opinions of field operatives” and the whole panoply of euphemisms for changing figures so that they tell a more convenient story.

In one sense this was rather depressing, someone having got so much right, but still facing challenges. However, it also chimes with another theme that I have stressed many times under the banner of cultural transformation; it is crucially important than any information initiative either has, or works assiduously to establish, the active support of all echelons of the organisation. In some of my most successful BI/DW work, I have had the benefit of the direct support of the CEO. Equally, it is is very important to ensure that the highest levels of your organisation buy in before commencing on a stepped-change to its information capabilities.

I am way overdue employing another sporting analogy - odd however how must of my rugby-related ones tend to be non-explicit

My experience is that enhanced information can have enormous payback. But it is risky to embark on an information programme without this being explicitly recognised by the senior management team. If you avoid laying this important foundation, then this is simply storing up trouble for the future. The best BI/DW projects are totally aligned with the strategic goals of the organisation. Given this, explaining their objectives and soliciting executive support should be all the easier. This is something that I would encourage my fellow information professionals to seek without exception.
 

How to use your BI Tool to Highlight Deficiencies in Data

My interview with Microsoft’s Bruno Aziza (@brunoaziza), which I trailed in Another social media-inspired meeting, was published today on his interesting and entertaining bizintelligence.tv site.

You can take a look at the canonical version here and the YouTube version appears below:

The interview touches on themes that I have discussed in:

 

Incremental Progress and Rock Climbing

Ovum

Introduction

Last week Ovum and @SarahBurnett were kind enough to invite me to speak at their Business Intelligence Masterclass in London.

Unfortunately one of the Ovum presenters, Madan Sheina, was ill, but Sarah did a great job running the session. The set up of the room and the number of delegates both encouraged interaction and there was a great atmosphere with lots of questions from the attendees and some interesting exchanges of ideas. Work commitments meant that I had to leave after lunch, which was a shame as I am sure that – based on what I saw in the morning – the afternoon workshops sessions would have been both entertaining and productive.

I certainly enjoyed my presentation – on Initiating and Developing a BI Strategy – which focussed on both my framework for success in Business Intelligence and, in particular, addressing the important cultural transformation aspects of these. Thank you also to the delegates both for the questions and observations and for kindly awarding my talk an 83% rating via the now ubiquitous seminar questionnaire.

Bouldering and Cultural Transformation

Boysen's Groove (V3/4) Dinas Mot, North Wales
My partner bouldering the classic Boysen’s Groove in Snowdonia

As part of my section on change management, I covered some of the themes that I introduced in my article Perseverance. In this I spoke about one of the types of rock climbing that I enjoy; bouldering. Bouldering is regular rock climbing on steroids, it is about climbing ultra-hard, but short climbs; often on boulders – hence the name. I compared the level of commitment and persistence required for success in bouldering to the need for the same attributes in change management initiatives.

I spoke to a few different delegates about this analogy during a coffee break. One in particular came up with an interesting expansion on my rock climbing theme. He referred to how people engaged in mountaineering and multi-pitch rock climbing make progress in a series of stages, establishing a new base at a higher point before attempting the next challenge. He went on to link this to making incremental progress on IT projects. I thought this was an interesting observation and told the gentleman in question that he had provided the inspiration for a future blog article.

An introduction to lead climbing

The above video is excerpted from the introduction to Hard Grit a classic 1998 climbing film by Slackjaw productions. It features climbing on the Gritstone (a type of hard sandstone) edges of the UK’s Peak District. This famous sequence shows a pretty horrendous fall off of a Peak District test piece called Gaia at Black Rocks. Amazingly the climber received no worse injuries than a severely battered and lacerated leg. Despite its proximity to my home town of London, Gritstone climbing has never been my cup of tea – it is something of an acquired taste and one that I have never appreciated as much as its many devotees.

As an aside you can see a photo of a latter-day climber falling off the same route at the beginning of my article, Some reasons why IT projects fail. I’m glad to say in this photo, unlike the video above, the climber is wearing a helmet!

What the clip illustrates is the dangers inherent in the subject of this article; traditional lead climbing. OK the jargon probably needs some explanation. First of all climbing is a very broad church, in this piece I’ll be ignoring whole areas such as mountaineering, soloing and the various types of winter and ice climbing. I am going to focus on roped climbing on rock, something that generally requires dry weather (unless you are a masochist or the British weather changes on you).

In this activity, one person climbs (unsurprisingly the climber) and another holds the rope attached to them (the belayer). The belayer uses a mechanism called a belay device to do this, but we will elide these details. With my background in Business Intelligence, I’ll now introduce some dimensions with which you can “slice and dice” this activity:

  1. multi-pitch / single pitch

    Single-pitch climbs are shorter than a length of rope (typically 50-70m) and often happen on rock outcrops such as in the Peak District mentioned above. The climber completes the climb and then the belayer may follow them up if they want, or alternatively the climber might walk round to find an easy decent and the pair will then go and find another climb.


    Multi-pitch climbs consist of at least two pitches; and sometimes many more. They tend to be in a mountain environment. One person may climb a pitch and then alternate with their partner, or the same person may climb each section first. It depends on the team.

  2. top roping / leading

    Top roping is not a very precise term (bottom roping might be more accurate) but is generally taken to mean that the rope runs from the belayer, to the top of the climb and then down to the climber.A fall when top roping

    As the climber ascends, the belayer (hopefully!) takes in the slack, but (again hopefully!) without hauling the climber up the route. This means that if the climber falls (and the belayer is both competent and attentive) they should be caught by the rope almost immediately. Obviously this arrangement only works on single-pitch climbs.


    In lead climbing, or leading, the rope runs from the belayer up to the climber. As the climber ascends, they attach the rope to various points in the rock on the climb (for how they do this see the next bullet point).A leader fall - assuming that the gear holds

    Assuming that the climber is able to make a good attachment to the rock (again see next point) the issue here is how far they fall. If they climb 2m above their last attachment point, then a slip at this point will see them swinging 2m below this point – a total fall of 4m, much longer than when top roping. Also if the last attachment point is say 10m above the ground and the climber falls off say 8m above this, then slack in the system and rope stretch will probably see them hit the ground; something that should never happen in top roping.

    [As an aside true top roping is what happens when the belayer climbs up after the climber. Here they are now belayed by the original climber from above. However no one uses the term top roping for this, instead they talk about bringing up the second, or seconding. Top roping is reserved for the practice of bottom roping described above, no one said that climbing was a logical sport!]

  3. sport / traditional In the last point I referred to a lead climber mysteriously attaching themselves to the rock as they ascend. The way that they do this determines whether they are engaged in sport or traditional climbing (though there is some blurriness around the edges).

    In sport climbing, holes are pre-drilled into the rock at strategic intervals (normally 3-5m apart, but sometimes more). Into these are glued either a metal staple or a single bolt with a metal hanger on it that has a hole in it.Staple or bolt with hanger - used in Sport Climbing

    The process of equiping a sport route in this way can take some time, particularly if it is overhanging and of course it needs to be done well if the bolts are to hold a climber’s fall. A single-pitch sport climb may have 10 or more of these bolts, plus generally a lower-off point at the top.

    DMM Phantom Quick-draw (or extender)

    The climber will take with them at least the same number of quick draws as there are bolts. These are two spring-loaded carabiners joined by a section of strong tape. As the climber ascends, they clip one end of a quick-draw to the staple or hanger and the other end over the rope attaching them to their belayer.

    So long as the person who drilled and inserted the bolts did a good job and so long as the climber is competent in clipping themselves into these; then sport climbing should be relatively safe. At this point I should stress that I know of good climbers who have died sport climbing, often by making a simple mistake, often after having completed a climb and looking to lower off. Sport climbing is a relatively safer form of climbing, but it is definitively not 100% safe; no form of climbing is.

    Because of its [relative] safety, sport climbing has something of the ethos of bouldering, with a focus on climbing at your limit as the systems involved should prevent serious injury in normal circumstances.


    In traditional climbing (uniformly called trad) the difference is that there are no pre-placed bolts, instead the climber has to take advantage of the nature of the rock to arrange their own attachment points. This means that you have to take the contents of a small hardware store with you on your climb. The assorted pieces of gear that you might use to protect yourself include: Nuts/wires (which you try to wedge into small cracks):

    A selection of DMM wall-nuts

    Hexes (which you try to wedge into large cracks):

    Wild Country Hexacentrics

    Cams/Friends (spring-loaded mechanical devices that you place in parallel cracks – the latter name being a make of cams):

    Black Diamond Cam-a-lots

    Slings (which you use to lasso spikes, or thread through any convenient holes in the rock):

    Dynema slings

    Once you have secured any of the above into or around the rock, you clip in with a quick-draw as in Sport climbing and heave a sigh of relief.

In the video that started this section, Jean-minh Trin-thieu falls (a long way) on to a cam, which thankfully holds. The issue on this particular climb is that there are no more opportunities to place gear after the final cam at round about half-way up. The nature of the rock means that a lot of Gritsone climbing is like this; one of the reasons that it is not a favourite of mine.

In any case, having established the above dimensions, I am going to drill down via two of them to concentrate on just trad leading. My comments apply equally to multi- and single-pitch, but the former offers greater scope for getting yourself into trouble.

The many perils of trad leading

This is why they call lead climbing "the sharp end"
Dave Birkett on “Nowt Burra Fleein’ thing” E8 6c, Cam Crag, Wasdale, The English Lake District – © Alastair Lee – Posingproductions.com

One of the major issues with trad climbing, particularly multi-pitch trad climbing in a mountain environment is that you are never quite sure what you need to take. The more gear you clip to your harness, the more likely you are to be able to deal with any eventuality, but the heavier you are going to be and the harder it will be to climb. Some one once compared trad leading to climbing wearing a metal skirt.

The issue here is that not only do you have to find somewhere to place this protective gear, you have to place it well so that it is not dislodged as you climb past, or pulls out if you fall. What adds to this problem is that you may have to try to place say a wire in a situation where you are holding on to a small hold with one hand, with only one foot on a hold and the other dangling. You may also be on an overhang and thus with all gravity’s force coming to bear on your tendons. At such moments thoughts like “how far below was my last piece of gear?”, “how confident am I that I placed it well?” and “what happens if I can’t fiddle this piece of metal into this crack before my fingers un-peal?” tend to come to mind with alarming ease.

It is not unheard of for a trad leader to climb up many metres, placing an assortment of gear en route, only to fall off and have all of it rip out, a phenomenon call “unzipping”, thankfully not something I have experienced directly; though I have seen it happen to other people.

These additional uncertainties tend to lead to a more cautious approach to trad leading, with many people climbing within their abilities on trad climbs. Some people push themselves on trad and some get away with it for a while. However there is a saying about there being old climbers and bold climbers, but no old bold climbers.

The links with business projects

El Capitan, Yosemite, CA.

I have written quite a few times before about the benefits of an incremental approach, so long as this bears the eventual strategic direction in mind (see for example: Tactical Meandering and Holistic vs Incremental approaches to BI). In rock climbing, even within a single pitch, it is often recommended to break this into sections, particularly if there are obvious places (e.g. ledges) where you can take a bit of a rest and consider the next section. This also helps with not being too daunted; often the biggest deal is to start climbing and once you are committed then things become easier (though of course this advice can also get you in over your head on occasion).

Splitting a climb into sections is a good idea, but – in the same way as with business projects – you need to keep your eye on your eventual destination. If you don’t you may be so focussed on the current moves that you go off route and then have to face potentially difficult climbing to get back where you need to be. The equivalent in business would be projects that do not advance the overall programme.

However the analogy doesn’t stop there. If we break a single-pitch trad lead climb into smaller sections, those between each piece of gear that you place, then it is obvious that you need to pay particular attention to the piece of equipment that you are about to employ. If you do this well, then you have minimised the distance that you will fall and this will bolster your confidence for the next piece of climbing. If you rush placing your gear, or assume that it is sort of OK, then at the best you will give yourself unnecessary concerns about your climbing for the next few metres. At worst a fall could lead to this gear ripping and a longer fall, or even hitting the ground.

In business projects, if you take an incremental approach, then in the same way you must remember that you will be judged on the success or failure of the most recent project. Of course if you have a track record of earlier success then this can act as a safety net; the same as when your highest piece of gear fails, but the next one catches you. However, it is not the most comfortable of things to take a really long leader fall and similarly it is best to build on the success of one project with further successes instead of resting on your laurels.

Of course the consequences of rushing your interim steps in rock climbing can be a lot more terminal than in business. Nevertheless failure in either activity is not welcome and it is best to take every precaution to avoid it.
 

Feasibility studies continued…

These make a very disconcerting popping noise when you suffer them
A2 pulley injuries. Partial tear (left) and complete tear (right).
Images © Eric J. Horst, via http://www.nicros.com

Back in May 2009 I wrote about The importance of feasibility studies in business intelligence. More recently I penned a piece entitled Running before you can walk, which compared the circumstances behind me injuring my finger rock climbing to how IT teams can sometimes behave when under pressure.

I started my own feasibility study today, climbing [sadly only indoors] for the first time in the six, or so, weeks since I injured myself. Learning from my previous impetuousness I stuck to lowly V0s, working up only as far as V2 (for anyone interested an explanation of bouldering grades can be found here). My patience in forgoing climbing for a month and a half, together with my caution today seems to have paid off. Aside from a few tweaks, my damaged finger seems to have come through OK. I now need to remember to build things up very slowly and back-off at the first sign of any crunchiness whatsoever.

As per my previous analogy, it similarly takes time to turn round business or IT performance. Change is more of a marathon than a sprint (though often some basic things can be done a lot quicker). Staying with the area of rock climbing / business cross-overs, another previous article – Perseverance – highlighted the importance of this attribute in both areas. My aim is to take my own advice!