More Definitions in the Data and Analytics Dictionary

The Data and Analytics Dictionary

The peterjamesthomas.com Data and Analytics Dictionary is an active document and I will continue to issue revised versions of it periodically. Here are 20 new definitions, including the first from other contributors (thanks Tenny!):

  1. Artificial Intelligence Platform
  2. Data Asset
  3. Data Audit
  4. Data Classification
  5. Data Consistency
  6. Data Controls
  7. Data Curation (contributor: Tenny Thomas Soman)
  8. Data Democratisation
  9. Data Dictionary
  10. Data Engineering
  11. Data Ethics
  12. Data Integrity
  13. Data Lineage
  14. Data Platform
  15. Data Strategy
  16. Data Wrangling (contributor: Tenny Thomas Soman)
  17. Explainable AI (contributor: Tenny Thomas Soman)
  18. Information Governance
  19. Referential Integrity
  20. Testing Data (Training Data)

Remember that The Dictionary is a free resource and quoting contents (ideally with acknowledgement) and linking to its entries (via the buttons provided) are both encouraged.

People are now also welcome to contribute their own definitions. You can use the comments section here, or the dedicated form. Submissions will be subject to editorial review and are not guaranteed to be accepted.
 


 

From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

Convergent Evolution

Ichthyosaur and Dolphin

No this article has not escaped from my Maths & Science section, it is actually about data matters. But first of all, channeling Jennifer Aniston [1], “here comes the Science bit – concentrate”.


 
Shared Shapes

The Theory of Common Descent holds that any two organisms, extant or extinct, will have a common ancestor if you roll the clock back far enough. For example, each of fish, amphibians, reptiles and mammals had a common ancestor over 500 million years ago. As shown below, the current organism which is most like this common ancestor is the Lancelet [2].

Chordate Common Ancestor

To bring things closer to home, each of the Great Apes (Orangutans, Gorillas, Chimpanzees, Bonobos and Humans) had a common ancestor around 13 million years ago.

Great Apes Common Ancestor

So far so simple. As one would expect, animals sharing a recent common ancestor would share many attributes with both it and each other.

Convergent Evolution refers to something else. It describes where two organisms independently evolve very similar attributes that were not features of their most recent common ancestor. Thus these features are not inherited, instead evolutionary pressure has led to the same attributes developing twice. An example is probably simpler to understand.

The image at the start of this article is of an Ichthyosaur (top) and Dolphin. It is striking how similar their body shapes are. They also share other characteristics such as live birth of young, tail first. The last Ichthyosaur died around 66 million years ago alongside many other archosaurs, notably the Dinosaurs [3]. Dolphins are happily still with us, but the first toothed whale (not a Dolphin, but probably an ancestor of them) appeared around 30 million years ago. The ancestors of the modern Bottlenose Dolphins appeared a mere 5 million years ago. Thus there is tremendous gap of time between the last Ichthyosaur and the proto-Dolphins. Ichthyosaurs are reptiles, they were covered in small scales [4]. Dolphins are mammals and covered in skin not massively different to our own. The most recent common ancestor of Ichthyosaurs and Dolphins probably lived around quarter of a billion years ago and looked like neither of them. So the shape and other attributes of Ichthyosaurs do not come from a common ancestor, they have developed independently (and millions of years apart) as adaptations to similar lifestyles as marine hunters. This is the essence of Convergent Evolution.

That was the Science, here comes the Technology…


 
A Brief Hydrology of Data Lakes

From 2000 to 2015, I had some success [5] with designing and implementing Data Warehouse architectures much like the following:

Data Warehouse Architecture (click to view larger version in a new window)

As a lot of my work then was in Insurance or related fields, the Analytical Repositories tended to be Actuarial Databases and / or Exposure Management Databases, developed in collaboration with such teams. Even back then, these were used for activities such as Analytics, Dashboards, Statistical Modelling, Data Mining and Advanced Visualisation.

Overlapping with the above, from around 2012, I began to get involved in also designing and implementing Big Data Architectures; initially for narrow purposes and later Data Lakes spanning entire enterprises. Of course some architectures featured both paradigms as well.

One of the early promises of a Data Lake approach was that – once all relevant data had been ingested – this would be directly leveraged by Data Scientists to derive insight.

Over time, it became clear that it would be useful to also have some merged / conformed and cleansed data structures in the Data Lake. Once the output of Data Science began to be used to support business decisions, a need arose to consider how it could be audited and both data privacy and information security considerations also came to the fore.

Next, rather than just being the province of Data Scientists, there were moves to use Data Lakes to support general Data Discovery and even business Reporting and Analytics as well. This required additional investments in metadata.

The types of issues with Data Lake adoption that I highlighted in Draining the Swamp earlier this year also led to the advent of techniques such as Data Curation [6]. In parallel, concerns about expensive Data Science resource spending 80% of their time in Data Wrangling [7] led to the creation of a new role, that of Data Engineer. These people take on much of the heavy lifting of consolidating, fixing and enriching datasets, allowing the Data Scientists to focus on Statistical Analysis, Data Mining and Machine Learning.

Big Data Architecture (click to view larger version in a new window)

All of which leads to a modified Big Data / Data Lake architecture, embodying people and processes as well as technology and looking something like the exhibit above.

This is where the observant reader will see the concept of Convergent Evolution playing out in the data arena as well as the Natural World.


 
In Closing

Convergent Evolution of Data Architectures

Lest it be thought that I am saying that Data Warehouses belong to a bygone era, it is probably worth noting that the archosaurs, Ichthyosaurs included, dominated the Earth for orders of magnitude longer that the mammals and were only dethroned by an asymmetric external shock, not any flaw their own finely honed characteristics.

Also, to be crystal clear, much as while there are similarities between Ichthyosaurs and Dolphins there are also clear differences, the same applies to Data Warehouse and Data Lake architectures. When you get into the details, differences between Data Lakes and Data Warehouses do emerge; there are capabilities that each has that are not features of the other. What is undoubtedly true however is that the same procedural and operational considerations that played a part in making some Warehouses seem unwieldy and unresponsive are also beginning to have the same impact on Data Lakes.

If you are in the business of turning raw data into actionable information, then there are inevitably considerations that will apply to any technological solution. The key lesson is that shape of your architecture is going to be pretty similar, regardless of the technical underpinnings.


 
Notes

 
[1]
 
The two of us are constantly mistaken for one another.
 
[2]
 
To be clear the common ancestor was not a Lancelet, rather Lancelets sit on the branch closest to this common ancestor.
 
[3]
 
Ichthyosaurs are not Dinosaurs, but a different branch of ancient reptiles.
 
[4]
 
This is actually a matter of debate in paleontological circles, but recent evidence suggests small scales.
 
[5]
 
See:

 
[6]
 
A term that is unaccountably missing from The Data & Analytics Dictionary – something to add to the next release. UPDATE: Now remedied here.
 
[7]
 
Ditto. UPDATE: Now remedied here

 


From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

Version 2 of The Anatomy of a Data Function

Between November and December 2017, I published the three parts of my Anatomy of a Data Function. These were cunningly called Part I, Part II and Part III. Eight months is a long time in the data arena and I have now issued an update.

The Anatomy of a Data Function

Larger PDF version (opens in a new tab)

The changes in Version 2 are confined to the above organogram and Part I of the text. They consist of the following:

  1. Split Artificial Intelligence out of Data Science in order to better reflect the ascendancy of this area (and also its use outside of Data Science).
     
  2. Change Data Science to Data Science / Engineering in order to better reflect the continuing evolution of this area.

My aim will be to keep this trilogy up-to-date as best practice Data Functions change their shapes and contents.


 
If you would like help building or running your Data Function, or would just like to have an informal chat about the area, please get in touch
 


From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

Link directly to entries in the Data and Analytics Dictionary

The Data and Analytics Dictionary

The peterjamesthomas.com Data and Analytics Dictionary has always had internal tags (anchors for those old enough to recall their HTML) which allowed me, as its author, to link to individual entries from other web-pages I write. An example of the use of these is my article, A Brief History of Databases.

I have now made these tags public. Each entry in the Dictionary is followed by the full tag address in a box. This is accompanied by a link icon as follows:

Data Dictionary excerpt

Clicking on the link icon will copy the tag address to your clipboard. Alternatively the tag URL may just be copied from the box containing it directly. You can then use this address in your own article to link back to the D&AD entry.

As with the vast majority of my work, the contents of the Data and Analytics Dictionary is covered by a Creative Commons Attribution 4.0 International Licence. This means you can include my text or images in your own web-pages, presentations, Word documents etc. You can even modify my work, so long as you point out that you have done this.

If you would like to link back to the Data and Analytics Dictionary to provide definitions of terms that you are using, this should now be very easy. For example:

Lorem ipsum dolor sit amet, consectetur adipiscing Big Data elit. Duis tempus nisi sit amet libero vehicula Data Lake, sed tempor leo consectetur. Pellentesque suscipit sed felisData Governance ac mattis. Fusce mattis luctus posuere. Duis a Spark mattis velit. In scelerisque massa ac turpis viverra, acLogistic Regression pretium neque condimentum.

Equally, I’d be delighted if you wanted to include part of all of the text of an entry in the Data and Analytics Dictionary in your own work, commercial or personal; a link back using this new functionality would be very much appreciated.

I hope that this new functionality will be useful. An update to the Dictionary’s contents will be published in the next couple of months.
 


From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

The Anatomy of a Data Function – Part III

Part I Part II Part III

Sepia's Anatomy

This is the third and final part of my review of the anatomy of a Data Function, Part I may be viewed here and Part II here.

Update:

The data arena is a fluid one. The original set of Anatomy of a Data Function articles dates back to November 2017. As of August 2018, the data function schematic has been updated to separate out Artificial Intelligence from Data Science and to change the latter to Data Science / Engineering. No doubt further changes will be made from time to time.

In the first article, I introduced the following Data Function organogram:

The Anatomy of a Data Function

Larger PDF version (opens in a new tab)

and went on to cover each of Data Strategy, Analytics & Insight and Data Operations & Technology. In Part II, I discussed the two remaining Data Function areas of Data Architecture and Data Management. In this final article, I wanted to cover the Related Areas that appear on the right of the above diagram. This naturally segues into talking about the practicalities of establishing a Data Function and highlighting some problems to be avoided or managed.

As in Parts I and II, unless otherwise stated, text indented as a quotation is excerpted from the Data and Analytics Dictionary.
 
 
Related Areas

Related Areas

I have outlined some of the key areas with which the Data Function will work. This is not intended to be a comprehensive list and indeed the boxes may be different in different organisations. Regardless of the departments that appear here, the general approach will however be similar. I won’t go through each function in great detail here. There are some obvious points to make however. The first is an overall one that clearly a collaborative approach is mandatory. While there are undeniably some police-like attributes of any Data Function, it would be best if these were carried out by friendly community policemen or women, not paramilitaries.

So rather more:

Community Police

and rather less:

Not quite so Community Police
 
Data Privacy and Information Security

Though strongly related, these areas do not generally fall under the Data Function. Indeed some legislation requires that they are separate functions. Data Privacy and Information Security are related, but also distinct from each other. Definitions are as follows:

[Data Privacy] pertains to data held by organisations about individuals (customers, counterparties etc.) and specifically to data that can be used to identify people (personally identifiable data), or is sensitive in nature, such as medical records, financial transactions and so on. There is a legal obligation to safeguard such information and many regulations around how it can be used and how long it can be retained. Often the storage and use of such data requires explicit consent from the person involved.

Data and Analytics Dictionary entry: Data Privacy

Information Security consists of the steps that are necessary to make sure that any data or information, particularly sensitive information (trade secrets, financial information, intellectual property, employee details, customer and supplier details and so on), is protected from unauthorised access or use. Threats to be guarded against would include everything from intentional industrial espionage, to ad hoc hacking, to employees releasing or selling company information. The practice of Information Security also applies to the (nowadays typical) situation where some elements of internal information is made available via the internet. There is a need here to ensure that only those people who are authenticated to access such information can do so.

Data and Analytics Dictionary entry: Information Security

 
Digital

Digital is not a box that would have necessarily have appeared on this chart 15, or even 10, years ago. However, nowadays this is often an important (and large) department in many organisations. Digital departments leverage data heavily; both what they gather themselves and and data drawn from other parts of the organisation. This can be to show customers their transactions, to guide next best actions, or to suggest potentially useful products or services. Given this, collaboration with the Data Function should be particularly strong.
 
Change Management

There are some specific points to make with respect to Change collaboration. One dimension of this was covered in Part II. Looking at things the other way round, as well as being a regular department, with what are laughingly referred to as “business as usual” responsibilities [1], the Data Function will also drive a number of projects and programmes. Depending on how this is approached in an organisation, this means either that the Data Function will need its own Project Managers etc., or to have such allocated from Change. This means that interactions with Change are bidirectional, which may be particularly challenging.

For some reason, Change departments have often ended up holding the purse strings for all projects and programmes (perhaps a less than ideal outcome), so a Data Function looking to get its own work done may run counter to this (see also the second section of this article).
 
IT

While the role of IT is perhaps narrower nowadays than historically [2], they are deeply involved in the world of data and the infrastructure that supports its movement around the organisation. This means that the Data Function needs to pay particular attention to its relationship with IT.
 
Embedded Analytics Teams

A wholly centralised approach to delivering Analytics is neither feasible, nor desirable. I generally recommend hybrid arrangements with a strong centralised group and affiliated analytical resource embedded in business teams. In some organisations such people may be part of the Data Function, or have a dotted line into it. In others the connection may be less formal. Whatever the arrangements, the best result would be if embedded analytical staff viewed themselves as part of a broader analytical and data community, which can share tips, work to standards and leverage each other’s work.
 
Data Stewards

Data Stewards are a concept that arises from a requirement to embed Data Governance policies and processes. Data Function Governance staff and Data Architects both need to work closely with Data Stewards. A definition is as follows:

This is a concept that arises out of Data Governance. It recognises that accountability for things like data quality, metadata and the implementation of data policies needs to be devolved to business departments and often locations. A Data Steward is the person within a particular part of an organisation who is responsible for ensuring that their data is fit for purpose and that their area adheres to data policies and guidelines.

Data and Analytics Dictionary entry: Data Steward

  
End User Computing

There are several good reasons for engaging with this area. First, the various EUCs that have been developed will embody some element (unsatisfied elsewhere) of requirements for the processing and or distribution of data; these needs probably need to be met. Second, EUCs can present significant risks to organisations (as well as delivering significant benefits) and ameliorating these (while hopefully retaining the benefits) should be on the list of any Data Function. Third, the people who have built EUCs tend to be knowledgeable about an organisation’s data, the sort of people who can be useful sources of information and also potential allies.

[End User Computing] is a term used to cover systems developed by people other than an organisation’s IT department or an approved commercial software vendor. It may be that such software is developed and maintained by a small group of people within a department, but more typically a single person will have created and cares for the code. EUCs may be written in mainstream languages such as Java, C++ or Python, but are frequently instead Excel- or Access-based, leveraging their shared macro/scripting language, VBA (for Visual Basic for Applications). While related to Microsoft Visual Basic (the precursor to .NET), VBA is not a stand-alone language and can only run within a Microsoft Office application, such as Excel.

Data and Analytics Dictionary entry: End User Computing (EUC)

 
Third Party Providers

Often such organisations may be contracted through the IT function; however the Data Function may also hire its own consultants / service providers. In either case, the Data Function will need to pay similar attention to external groups as it does to internal service providers.
 
 
Building a Data Function for the Practical Man [3]

Flag Planting for the Practical Man

When I published Part I of this trilogy, many people were kind enough to say that they found reading it helpful. However, some of the same people went on to ask for some practical advice on how to go about setting up such a Data Function and – in particular – how to navigate the inevitable political hurdles. While I don’t believe in recipes for success that are guaranteed to work in all circumstances, the second section of this article will cover three selected high-level themes that I think are helpful to bear in mind at the start of a Data Function journey. Here I am assuming that you are the leader of the nascent Data Function and it is your accountability to build the team while adding demonstrable business value [4].

Starting Small

It is a truth universally acknowledged, that a Leader newly in possession of a Data Function, must be in want of some staff [5]. However seldom will such a person be furnished with a budget and headcount commensurate with the task at hand; at least in the early days. Often instead, the mission, should you choose to accept it, is to begin to make a difference in the Data World with a skeleton crew at best [6]. Well no one can work miracles and so it is a question of judgement where to apply scarce resource.

My view is that this is best applied in shining a light on the existing data landscape, but in two ways. First, at the Analytics end of the spectrum, looking to unearth novel findings from an organisation’s data; the sort of task you give to a capable Data Scientist with some background in the industry sector they are operating in. Second, at the Governance end of the spectrum, documenting failures in existing data processing and reporting; in particular any that could expose the organisation to specific and tangible risks. In B2C organisations, an obvious place to look is in customer data. In B2B ones instead you can look at transactions with counterparties, or in the preparation of data for external reports, either Financial or Regulatory. Here the ideal person is a competent Data Analyst with some knowledge of the existing data landscape, in particular the compromises that have to be made to work with it.

In both cases, the objective is to tell the organisation things it does not know. Positively, a glimmer of what nuggets its data holds and the impact this could have. Negatively, examples of where a poor data landscape leads to legal, regulatory, or reputational risks.

These activities can add value early on and increase demand for more of this type of work. The first investigation can lead to the creation of a Data Science team, the second to the establishment of regular Data Audits and people to run these.

A corollary here is a point that I ceaselessly make, data exploitation and data control are two sides of the same coin. By making progress in areas that are at least superficially at antipodal locations within a Data Function, the connective tissue between them becomes more apparent.

BAU or Project?

There is a pernicious opinion held by an awful lot of people which goes as follows.

  1. We have issues with our data, its quality, completeness and fitness for purpose.
  2. We do not do a good enough job of leveraging our data to guide decision making.
  3. Therefore we need a data project / programme to sort this out once and for all.
  4. Where is the telephone number of the Change Director?

Well there is some logic to the above and setting up a data project (more likely programme) is a helpful thing to do. However, this is necessary, but not sufficient [7]. Let’s think of a comparison?

  1. We need to ensure that our Financial and Management accounts are sound.
  2. It would be helpful if business leaders had good Financial reports to help them understand the state of their business.
  3. Therefore we need a Finance project / programme to sort this out once and for all.
  4. Where is the telephone number of the Change Director?

Most CFOs would view the above as their responsibility. They have an entire function focussed on such matters. Of course they may want to run some Finance projects and Change will help with this, but a Finance Department is an ongoing necessity.

To pick another example one that illustrates just how quickly the make-up of organisations can change, just replace the word “Finance” with “Risk” in the above and “CFO” with “CRO”. While programmes may be helpful to improve either Risk or Finance, they do not run the Risk or Finance functions, the designated officers do and they have a complement of staff to assist them. It is exactly the same with data. Data programmes will enhance your use of data or control of it, but they will not ensure the day-to-day management and leverage of data in your organisation. Running “data” is the responsibility of the designated officer [8] and they should have a complement of staff to assist them as well.

The Data Function is a “business as usual” [9] function. Conveying this fact to a range of stakeholders is going to be one of the first challenges. It may be that the couple of examples I cite above can provide some ammunition for this task.

Demolishing Demoralising Demarcations

With Data Functions and their leaders both being relative emergent phenomena [10], the separation of duties between them and other areas of a business that also deal with data can be less than clear. Scanning down the Related Areas column of the overall Data Function chart, three entities stand out who may feel that they have a strong role to play in data matters: Digital, Change Management and IT.

Of course each is correct and collaboration is the best way forward. However, human nature is not always do benign and I have several times seen jockeying for position between Data, Digital, Change and IT. Route A to resolving this is of course having clarity as to everyone’s roles and a lead Executive (normally a CEO or COO) who ensures that people play nicely with each other. Back in the real world, it will be down to the leaders in each of these areas to forge some sort of consensus about who does what and why. It is probably best to realise this upfront, rather than wasting time and effort lobbying Executives to rule on things they probably have no intention of ruling on.

Nascent Data Function leaders should be aware that there will be a tendency for other teams to carve out what might be seen as the sexier elements of Data work; this can almost seem logical when – for example – a Digital team already has a full complement of web analytics staff; surely it is just a matter of pointing these at other internal data sets, right?

If we assume that the Data Function is the last of the above mentioned departments to form, then “zero sum game” thinking would dictate that whatever is accretive to the Data Function is deleterious to existing data staff in other departments. Perhaps a good place to start in combatting this mind-set is to first acknowledge it and second to take steps to allay people’s fears. It may well make sense for some staff to gravitate to the Data Function, but only if there is a compelling logic and only if all parties agree. Offering the leaders of other departments joint decision-making on such sensitive issues can be a good confidence-building step.

Setting out explicitly to help colleagues in other departments, where feasible to do so, can make very good sense and begin the necessary work of building bridges. As with most areas of human endeavour, forging good relationships and working towards the common good are both the right thing to do and put the Data Function leader in a good place as and when more contentious discussions arise.

To make this concrete, when people in another function appear to be stepping on the toes of the Data Function, instead of reacting with outrage, it may be preferable to embrace and fully understand the work that is being done. It may even make sense to support such work, even if the ultimate view is to do things a bit differently. Insisting on organisational purity and a “my way, or the highway” attitude to data matters are both steps towards a failed Data Function. Instead, engage, listen, support and – maybe over time – seek to nudge things towards your desired state.
 
 
Closing Thoughts

That's All Folks

So we have reached the end of our anatomical journey. While maybe the information contained in these three articles would pale into insignificance compared to an actual course in human anatomy, we have nevertheless covered five main work-areas within a Data Function, splitting these down into nineteen sub-areas and cataloguing eight functions with which collaboration will be key in driving success. I have also typed over 8,000 words to convey my ideas. For those who have read all of them, thank you for your perseverance; I hope that the effort has been worthwhile and that you found some of my opinions thought-provoking.

I would also like to thank the various people who have provided positive feedback on this series via LinkedIn and Facebook. Your comments were particularly influential in shaping this final chapter.

So what are the main takeaways? Well first the word collaboration has cropped up a lot and – because data is so pervasive in organisations – the need to collaborate with a wide variety of people and departments is strong. Second, extending the human anatomy analogy, while each human shares a certain basic layout (upright, bipedal, two arms, etc.), there is considerable variation within the basic parameters. The same goes for the organogram of a Data Function that I have presented at the beginning of each of these articles. The boxes may be rearranged in some organisations, some may not sit in the Data Function in others, the amount of people allocated to each work-area will vary enormously. As with human anatomy, grasping the overall shape is more important than focussing on the inevitable variations between different people.

Third, a central concept is of course that a Data Function is necessary, not just a series of data-centric projects. Even if it starts small, some dedicated resource will be necessary and it would probably be foolish to embark on a data journey without at least a skeleton crew. Fourth, in such straitened circumstances, it is important to point early and clearly to the value of data, both in reducing potentially expensive risks and in driving insights that can save money, boost market share or improve products or services. If the budget is limited, attend to these two things first.

A fifth and final thought is how little these three articles have focussed on technology. Hadoop clusters, data visualisation suites and data governance tools all have their place, but the success or failure of data-centric work tends to pivot on more human and process considerations. This theme of technology being the least important part of data work is one I have come back to time and time again over the nine years that this blog has been published. This observation remains as true today as back in 2008.
 

Part I Part II Part III

 
Notes

 
[1]
 
BAU should in general be filed along with other mythical creatures such as Unicorns, Bigfoot, The Kraken and The Loch Ness Monster.
 
[2]
 
Not least because of the rise of Data Functions, Digital Teams and stand-alone Change Organisations.
 
[3]
 
A title borrowed from J E Thompson’s Calculus for the Practical Man; a tome read by the young Richard Feynman in childhood. Today “Calculus for the Practical Person” might be a more inclusive title.
 
[4]
 
Also known as “pulling yourself up by your bootstraps”.
 
[5]
 
I seem to be channelling JA a lot at present – see A truth universally acknowledged….
 
[6]
 
Indeed I have stated on this particular journey with just myself for company on no fewer than for occasions (these three 1, 2, 3, plus at Bupa).
 
[7]
 
Once a Mathematician, always a Mathematician.
 
[8]
 
See Alphabet Soup for some ideas about what he or she might be called.
 
[9]
 
See note 1.
 
[10]
 
Despite early high-profile CDOs beginning to appear at the turn of the millennium – Joe Bugajski was appointed VP and Chief Data Officer at Visa International in 2001 (Wikipedia).

 

From: peterjamesthomas.com, home of The Data and Analytics Dictionary

 

The Anatomy of a Data Function – Part II

Part I Part II Part III

Sepia's Anatomy

This is the second part of my review of the anatomy of a Data Function, the artfully named Part I may be viewed here. As seems to happen all too often to me, this series will now extend to having a Part III, which may be viewed here.

Update:

The data arena is a fluid one. The original set of Anatomy of a Data Function articles dates back to November 2017. As of August 2018, the data function schematic has been updated to separate out Artificial Intelligence from Data Science and to change the latter to Data Science / Engineering. No doubt further changes will be made from time to time.

In the first article, I introduced the following Data Function organogram:

The Anatomy of a Data Function

Larger PDF version (opens in a new tab)

and went on to cover each of Data Strategy, Analytics & Insight and Data Operations & Technology. In Part II, I will consider the two remaining Data Function areas of Data Architecture and Data Management. Covering Related Areas, and presenting some thoughts on how to go about setting up a Data Function and the pitfalls to be faced along the way, together form the third and final part of this trilogy.

As in Part I, unless otherwise stated, text indented as a quotation is excerpted from the Data and Analytics Dictionary.
 
 
Data Architecture

Data Architecture

To be somewhat self-referential, this area acts a a cornerstone for the rest of the Data Function. While sometimes non-Data architects can seem to inhabit a loftier plane than most mere mortals, Data Architects (who definitively must be part of the Data Function and none of the Business, Enterprise or Solutions Architecture groups) tend to be more practical sorts with actual hands-on technical skills. Perhaps instead of the title “Architect”, “Structural Engineer” would be more appropriate. When a Data Architect draws a diagram with connected boxes, he or she generally understands how the connections work and could probably take a fair stab at implementing the linkages themselves. The other denizens of this area, such as Data Business Analysts, are also essentially pragmatic people, focused on real business outcomes. Data Architecture is a non-theoretical discipline and here I present some of the real-world activities that its members are often engaged in.
 
Change Portfolio Engagement

One of the most important services that a good Data Function can perform is to act as a moderator for the otherwise deleterious impact that uncontrolled (and uncoordinated) Change portfolios can have on even the best of data landscapes [1]. As I mention in another article:

Over the last decade or so, the delivery of technological change has evolved to the point where many streams of parallel work are run independently of each other with each receiving very close management scrutiny in order to ensure delivery on-time and on-budget. It should be recognised that some of this shift in modus operandi has been as a result of IT departments running projects that have spiralled out of control, or where delivery has been significantly delayed or compromised. The gimlet-like focus of Change on delivery “come Hell or High-water” represents the pendulum swinging to the other extreme.

What this shift in approach means in practice is that – as is often the case – when things go wrong or take longer than anticipated, areas of work are de-scoped to secure delivery dates. In my experience, 9 times out of 10 one of the things that gets thrown out is data-related work; be that not bothering to develop reporting on top of new systems, not integrating new data into existing repositories, not complying with data standards, or not implementing master data management.

As well as the danger of skipping necessary data related work, if some data-related work is actually undertaken, then corners may be cut to meet deadlines and budgets. It is not atypical for instance that a Change Programme, while adding their new capabilities to interfaces or ETL, compromises or overwrites existing functionality. This can mean that data-centric code is in a worse state after a Change Programme than before. My roadworks anecdote begins to feel all too apt a metaphor to employ.

Looking more broadly at Change Programmes, even without the curse of de-scopes, their focus is seldom data and the expertise of Change staff is not often in data matters. Because of this, such work can indeed seem to be analogous to continually digging up the same stretch of road for different purposes, combined with patching things up again in a manner that can sometimes be barely adequate. Extending our metaphor, the result of Change that is not controlled from a data point of view can be a landscape with lumps, bumps and pot-holes. Maybe the sewer was re-laid on time and to budget, but the road has been trashed in the process. Perhaps a new system was shoe-horned in to production, but rendered elements of an Analytical Repository useless in the process.

Excerpted from: Bumps in the Road

A primary responsibility of a properly constituted Data Function is to lean hard against the prevailing winds of Change in order to protect existing data capabilities that would otherwise likely be blown away [2]. Given the gargantuan size of most current Change teams, it makes sense to have at least a reasonable amount of Data Function resource applied to this area. Hopefully early interventions in projects and programmes can mitigate any potentially adverse impacts and perhaps even lead to Change being accretive to data landscapes, as it really ought to be.

The best approach, as with most human endeavours is a collaborative one, with Data Function staff (probably Data Architects) getting involved in new Change projects and programmes at an early stage and shaping them to be positive from a Data dimension. However, there also needs to be teeth in the process; on occasion the Data Function must be able to prevent work that would cause true damage from going ahead; hopefully powers that are used more in breach than observance.
 
Data Modelling

It is in this area that the practical bent of Data Architects and Data Business Analysts is seen very clearly. Data modelling mirrors the realities of systems and databases the way that Theoretical Physicists use Mathematics to model the Natural World [3]. In both cases, while there may be a degree of abstraction, the end purpose is to achieve something more concrete. A definition is as follows:

[Data Modelling is] the process of examining data sets (e.g. the database underpinning a system) in order to understand how they are structured, the relationships between their various parts and the business entities and transactions they represent. While system data will have a specific Physical Data Model (the tables it contains and their linkages), Data Modelling may instead look to create a higher-level and more abstract set of pseudo-tables, which would be easier to relate to for non-technical staff and would more closely map to business terms and activities; this is known as a Conceptual Data Model. Sitting somewhere between the two may be found Logical Data Models. There are several specific documents produced by such work, one of the most common being an Entity-Relationship diagram, e.g. a sales order has a customer and one or more line items, each of which has a product.

Data and Analytics Dictionary entry: Data Modelling

 
Data Business Analysis

Another critical role. In my long experience of both setting up Data Functions and running Data Programmes, having good Data Business Analysts on board is often the difference between success and failure. I cannot stress enough how important this role is.

Data Business Analysts are neither regular Business Analysts, nor just Data Analysts, but rather a combination of the best of both. They do have all the requirement gathering skills of the best BAs, but complement these with Data Modelling abilities, always seeking to translate new requirements into expanded or refined Data Models. Also the way that they approach business requirements will be very specific. The optimal way to do this is by teasing out (and they collating and categorising) business questions and then determining the information needed to answer these. A good Data Business Analyst will also have strong Data Analysis skills, being able to work with unfamiliar and lightly-documented datasets to discern meaning and link this to business concepts. A definition is as follows:

A person who has extensive understanding of both business processes and the data necessary to support these. A Business Analyst is expert at discerning what people need to do. A Data Analyst is adept at working with datasets and extracting meaning from them. A Data Business Analyst can work equally happily in both worlds at the same time. When they talk to people about their requirements for information, they are simultaneously updating mental models of the data necessary to meet these needs. When they are considering how lightly-documented datasets hang together, they constantly have in mind the business purpose to which such resources may be bent.

Data and Analytics Dictionary entry: Data Business Analyst

 
 
Data Management

Data Management

Again, it is worth noting that I have probably defined this area more narrowly than many. It could be argued that it should encompass the work I have under Data Architecture and maybe much of what is under Data Operations & Technology. The actual hierarchy is likely to be driven by factors like the nature of the organisation and the seniority of Managers in the Data Function. For good or ill, I have focussed Data Management more on the care and feeding of Data Assets in my recommended set-up. A definition is as follows:

The day-to-day management of data within an organisation, which encompasses areas such as Data Architecture, Data Quality, Data Governance (normally on behalf of a Data Governance Committee) and often some elements of data provision and / or regular reporting. The objective is to appropriately manage the lifecycle of data throughout the entire organisation, which both ensures the reliability of data and enables it to become a valuable and strategic asset.

In some organisations, Data Management and Analytics are part of the same organisation, in others they are separate but work closely together to achieve shared objectives.

Data and Analytics Dictionary entry: Data Management

 
Data Governance

There is a clear link here with some of the Data Architecture activities, particularly the Change Portfolio Engagement work-area. Governance should represent the strategic management of the data component of Change (i.e. most of Change), day-to-day collaboration would sit more in the Data Architecture area.

The management processes and policies necessary to ensure that data captured or generated within a company is of an appropriate standard to use, represents actual business facts and has its integrity preserved when transferred to repositories (e.g. Data Lakes and / or Data Warehouses, General Ledgers etc.), especially when this transfer involves aggregation or merging of different data sets. The activities that Data Governance has oversight of include the operation of and changes to Systems of Record and the activities of Data Management and Analytics departments (which may be merged into one unit, or discrete but with close collaboration).

Data Governance has a strategic role, often involving senior management. Day-to-day tasks supporting Data Governance are often carried out by a Data Management team.

Data and Analytics Dictionary entry: Data Governance

 
Data Definitions & Metadata

This is a relatively straightforward area to conceptualise. Rigorous and consistent definitions of master data and calculated data are indispensable in all aspects of how a Data Function operates and how an organisation both leverages and protects its data. Focusing on Metadata, a definition would be as follows:

[Metadata is] data about data. So descriptions of what appears in fields, how these relate to other fields and what concepts bigger constructs like Tables embody. This helps people unfamiliar with a dataset to understand how it hangs together and is good practice in the same way that documentation of any other type of code is good practice. Metadata can be used to support some elements of Data Discovery by less technical people. It is also invaluable when there is a need for Data Migration.

Data and Analytics Dictionary entry: Metadata

 
Data Audit

One of the challenges in driving Data Quality improvements in organisations is actually highlighting the problems and their impacts. Often poor Data Quality is a hidden cost, spread across many people taking longer to do their jobs than is necessary, or specific instances where interactions with business counterparties (including customers) are compromised. Organisations obviously cope – at least in general – with these issues, but they are a drag on efficiency and, in extremis, can lead to incidents which can cause significant financial loss and/or reputational damage. A way to make such problems more explicit is via a regular Data Audit, a review of data in source systems and as it travels through various data repositories. This would include some assessment of the completeness and overall quality of data, highlighting areas of particular concern. So one component might include the percentage of active records which suffer from a significant data quality issue.

It is important that any such issues are categorised. Are they the result of less than perfect data entry procedures, which could be tightened up? Are they due to deficient validation in transactional systems, where this could be improved and there may be a role for Master Data Management? Are data interfaces between systems to blame, where these need to be reengineered or potentially replaced? Are there architectural issues with systems or repositories, which will require remedial work to address?

This information needs to be rolled up and presented in an accessible manner so that those responsible for systems and processes can understand where issues lie. Data Audits, even if partially automated, take time and effort, so it may be appropriate to carry them out quarterly. In this case, it is valuable to understand how the situation is changing over time and also to track the – hopefully positive – impact of any remedial action. Experienced Data Analysts with a good appreciation of how business is conducted in the organisation are the type of resource best suited to Data Audit work.
 
Data Quality

Much that needs to be said here is covered in the previous section about Data Audit. Data Quality can be defined as follows:

The characteristics of data that cover how accurately and completely it mirrors real world events and thereby how much reliance can be placed on it for the purpose of generating information and insight. Enhancing Data Quality should be a primary objective of Data Management teams.

Data and Analytics Dictionary entry: Data Quality

A Data Quality team, which would work closely with Data Audit colleagues, would be focussed on helping to drive improvements. The details of such work are covered in an earlier article, from which the following is excerpted:

There are a number of elements that combine to improve the quality of data:

  1. Improve how the data is entered
  2. Make sure your interfaces aren’t the problem
  3. Check how the data is entered / interfaced
  4. Don’t suppress bad data in your BI

As with any strategy, it is ideal to have the support of all four pillars. However, I have seen greater and quicker improvements through the fourth element than with any of the others.

Excerpted from: Using BI to drive improvements in data quality

 
Master Data Management

There is some overlap here with Data Definitions & Metadata as mentioned above. Master Data Management has also been mentioned here in the context of Data Quality initiatives. However this specialist area tends to demand dedicated staff. A definition is as follows:

Master Data Management is the term used to both describe the set of process by which Master Data is created, changed and deleted in an organisation and also the technological tools that can facilitate these processes. There is a strong relation here to Data Governance, an area which also encompasses broader objectives. The aim of MDM is to ensure that the creation of business transactions results in valid data, which can then be leveraged confidently to create Information.

Many of the difficulties in MDM arise from items of Master Data that can change over time; for example when one counterparty is acquired by another, or an organisational structure is changed (maybe creating new departments and consolidating old ones). The challenges here include, how to report historical transactions that are tagged with Master Data that has now changed.

Data and Analytics Dictionary entry: Master Data Management

 
 
At this point, we have covered all of the work-areas within our idealised Data Function. In the third and final piece, we will consider the right-hand column of Related Areas, ones that a Data Function must collaborate with. Having covered these, the trilogy will close by offering some thoughts on the challenges of setting up a Data Function and how these may be overcome.
 

Part I Part II Part III

 
Notes

 
[1]
 
I am old enough to recall a time before Change portfolios, I can recall no organisation in which I have worked over the last 20 years in which Change portfolios have had a positive impact on data assets; maybe I have just been unlucky, but it begins to feel more like a fundamental Physical Law.
 
[2]
 
I have clearly been writing about hurricanes too much recently!
 
[3]
 
As is seen, for example in, the Introduction to my [as yet unfinished] book on the role of Group Theory in Theoretical Physics, Glimpses of Symmetry.

 

From: peterjamesthomas.com, home of The Data and Analytics Dictionary

 

The Anatomy of a Data Function – Part I

Part I Part II Part III

Back in Alphabet Soup, I presented a diagram covering what I think are good and bad approaches to organising Analytics and Data Management. I wanted to offer an expanded view [1] of the good organisation chart and to talk a bit about each of its components. Originally, I planned to address these objectives across two articles. As happens to me all too frequently, the piece has now expanded to become three parts. The second may be read here, and the third here.

Update:

The data arena is a fluid one. The original set of Anatomy of a Data Function articles dates back to November 2017. As of August 2018, the data function schematic has been updated to separate out Artificial Intelligence from Data Science and to change the latter to Data Science / Engineering. No doubt further changes will be made from time to time.

Let’s leap right in and look at my suggested chart:

The Anatomy of a Data Function

Larger PDF version (opens in a new tab)

I appreciate that the above is a lot of boxes! I can feel Finance and HR staff reaching for their FTE calculators as I write. A few things to note:

  1. I have avoided the temptation to add the titles of executives, managers or team leaders. Alphabet Soup itself pointed out how tough it can be to wrestle with the nomenclature. Instead I have just focussed on areas of work.
     
  2. The term “work areas” is intentional. In larger organisations, there may be teams or individuals corresponding to each box. In smaller ones Data Function staff will wear many hats and several work areas may be covered by one person.
     
  3. In some places, a number of work areas that I have tagged as Data Function ones may be performed in other parts of the organisation, though it is to be hoped with collaboration and coordination.

Having dealt with these caveats, let’s provide some colour on each of these progressing from top to bottom and left to right. In this first article we will consider the Data Strategy, Analytics & Insight and Data Operations & Technology areas. The second part will cover the remaining elements of Data Architecture and Data Management. The final article, considers Related Areas before also covering some of the challenges that may be faced in setting up a Data Function.

In what follows, unless otherwise stated, text indented as a quotation is excerpted from the Data and Analytics Dictionary.
 
 
Data Strategy

Data Strategy

A clear strategy is obviously most important to establish in the early days of a Data Function. Indeed a Data Strategy may well call for the creation of a Data Function where none currently exists. For anyone interested in this process, I recommend my series of three articles on this subject [2]. However a Data Strategy is not something carved in stone, it will need to be revisited and adapted (maybe significantly) as circumstances change (e.g. after an acquisition, a change in market conditions or potentially due to the emergence of some new technology). There is thus a need for ongoing work in this area. However, as demand for strategic work will tend to be lumpy, I suggest amalgamating Data Strategy with the following two sub-areas.
 
Data Comms & Education

Elsewhere on this site, I have highlighted the need for effective communication, education and assiduous follow-up in data programmes [3]. Education on data matters does not stop when a data quality drive is successfully completed, or when a new set of analytical capabilities are introduced, this is a need for an ongoing commitment here. Activities falling into this work area include: publishing regular data newsletters and infographics, designing and helping to deliver training programmes, providing follow-up and support to aid the embedded used of new capabilities or to ingrain new behaviours.
 
Relationship Management

There is a need for all Data Function staff to establish and maintain good working relations with any colleagues they come into contact with, regardless of their level or influence. However, the nature of, generally hierarchical, organisations is that it is often prudent to pay special attention to more senior staff, or to the type of person (common in many companies) who may not be that senior, but whose opinion is influential. In aggregate these two groups of people are often described as stakeholders. Providing regular updates to stakeholders and ensuring both that they are comfortable with Data Function work and that this is aligned with their priorities can be invaluable [4]. Having senior, business-savvy Data Function people available to do this work is the most likely path to success.
 
 
Analytics & Insight

Analytics & Insight

Broadly speaking the Analytics area and its sub-areas are focussed more on one-off analyses rather that the recurrent production of information [5], the latter being more the preserve of the Data Operations & Technology area. There is also more of a statistical flavour to the work carried out here.

[Analytics relates to] deriving insights from data which are generally beyond the purpose for which the data was originally captured – to be contrasted with Information which relates to the meaning inherent in data (i.e. the reason that it was captured in the first place). Analytics often employ advanced statistical techniques (logistic regression, multivariate regression, time series analysis etc.) to derive meaning from data.

Data and Analytics Dictionary entry: Analytics

 
Data Science / Engineering

I have Data Science / Engineering as a sub-area of analytics, as with most terminology used in the data arena and most organisational units that exist in Data Functions, some people might argue that I have this the wrong way round and that Data Science / Engineering should be preeminent. Reconciling different points of view is not my objective here, I think most people will agree that both work areas should be covered. This comment pertains to many other parts of this article. Here is a two-part definition of the area (or rather the people who populate it):

[Data Scientists are people who are] au fait with exploiting data in many formats from Flat Files to Data Warehouses to Data Lakes. Such individuals possess equal abilities in the data technologies (such as Big Data) and how to derive benefit from these via statistical modelling. Data Scientists are often lapsed actual scientists.

[Data Engineering is] essentially a support function for Data Science. If you consider the messy process of sourcing data, loading it into a repository, cleansing, filling in “holes”, combining disparate data and so on, this is a somewhat different skill set to then analysing the resulting data. Early in the history of Data Science, the whole process sat with Data Scientists. Increasingly nowadays, the part before actual analysis begins is carried out by Data Engineers. These people often also concern themselves with aspects of Master Data Management and Data Architecture.

Data and Analytics Dictionary entries: Data Scientist and Data Engineering

 
Artificial Intelligence

Artificial Intelligence (AI) has its roots in the academic discipline of both trying to understand cognition and reproduce it. In recent years, AI has come out of the lecture hall and lab and become an increasingly important aspect of the modern world, from driving our cars, to providing advice on financial products, to making recommendations for on-line purchases. Previously I had AI subsumed in the Data Science section. However, two trends have caused me to split it out in the current version of the Data Function Anatomy. First the importance of AI is increasing rapidly. Second it is no longer just Data Scientists who carry out this work. The advent of AI Platforms hides some of the complexity, while allowing a broader range of people to leverage the power of AI. The particular element of AI that has caught on to the greatest extent in business to date is Machine Learning.

Data and Analytics Dictionary entry: Artificial Intelligence

 
Data Visualisation

There is an overlap here with both the Data Science team within the Analytics & Insight area and the Business Intelligence team in the Data Operations & Technology area. Many of the outputs of a good Data Function will include graphs, charts and other such exhibits. However, here would be located the real specialists, the people who would set standards for the presentation of visual data across the Data Function and be the most able in leveraging visualisation tools. A definition of Data Visualisation is as follows:

Techniques – such as graphs – for presenting complex information in a manner in which it can be more easily digested by human observers. Based on the concept that a picture paints a thousand words (or a dozen Excel sheets).

Data and Analytics Dictionary entry: Data Visualisation

 
Predictive Analytics

Gartner refer to four types of Analytics: descriptive, diagnostic, predictive and prescriptive analytics. In an article I referred to these as:

  • What happened?
  • Why did it happen?
  • What is going to happen next?
  • What should we be doing?

Data and Analytics Dictionary entry: Analytics

Predictive analytics is that element of the Analytics function that aims to predict the future, “What is going to happen next?” in the above list. This can be as simple as extrapolating data based on a trend line, or can involve more sophisticated techniques such as Time Series Analysis. As with most elements of the Data Function, there is overlap between Predictive Analytics and both Data Science and Business Intelligence.
 
“Skunkworks”

As with Data Strategy, state-of-the-art in Analytics & Insight will continue to evolve. This part of the Data Function will aim to keep current with the latest developments and to try out new techniques and new technologies that may later be adopted more widely by Data Function colleagues. The “skunkworks” team would be staffed by capable programmers / data scientists / statisticians.
 
 
Data Operations & Technology

Data Operations & Technology

It could be reasonably argued that this area is part of Data Management; I probably would not object too strongly to this suggestion. However, there are some benefits to considering it separately. This is the most IT-like of the areas considered here. It recognises that data technology (being it the Hadoop suite, Data Warehouse technology, or combinations of both) is different to many other forms of technology and needs its own specialists to focus on it. It is likely that the staff in this area will also collaborate closely with IT (see the final work area in Part II) or, in some cases, supervise work carried out by IT. As well as directly creating data capabilities, Data Operations & Technology staff would be active in the day-to-day running of these; again in collaboration with colleagues from both inside and outside of the Data Function.
 
Business Intelligence

There is no ISO definition, but I use this term as a catch-all to describe the transformation of raw data into information that can be disseminated to business people to support decision-making.

Data and Analytics Dictionary entry: Business Intelligence

This sub-area focusses on the relatively mature task of providing Business Intelligence solutions to organisations and working with IT to support and maintain these. Good BI tools work best on a sound underlying information architecture and so there would need to also be close collaboration with Data Infrastructure staff within Data Operations & Technology as well as colleagues from Data Architecture and also Analytics & Insight.
 
Regular Reporting

If BI provides interactive capabilities to support decision making, Regular Reporting is about the provision of specific key reports to relevant parties on a periodic basis; daily, weekly, monthly etc. These may be burst out to people’s e-mail accounts, provided at some central location, or both. While this an area that is ideally automated, there will still be significant need for human monitoring and to support the inevitable changes.
 
Data Service

One of the things that any part of a Data Function will find itself doing on a very regular basis is crafting ad hoc data extracts for other departments, e.g. Marketing, Risk & Compliance etc. Sometimes such a need will be on an ongoing basis and a web-service or some other Data Integration mechanism will need to be set up. Rather than having this be something that is supported out of the general running costs of the Data Function, it makes sense to have a specific unit whose role is to fulfil these needs. Even so, there may be a need for queuing and prioritisation of requests
 
Data Infrastructure

This relates to the physical architecture of the data landscape (for various flavours of logical architectures, see Data Architecture in Part II). While some of the tasks here may be carried out by (or in collaboration with) IT, the Data Infrastructure team will be expert at the care and feeding of Hadoop and related technologies and have experience in the fine-tuning of Data Warehouses and Data Marts.
 
SWAT Team

While (as both mentioned above and also covered in Part III this article) some of the heavy lifting in data matters will be carried out by an organisation’s IT team and / or its external partners, the process for getting things done in this way can be slow, tortuous and expensive [6]. It is important that a Data Function has its own capability to make at least minor technological changes, or to build and deploy helpful data facilities without having to engage with the overall bureaucracy. The SWAT Team will have a small number of very capable and business-knowledgeable programmers, capable of quickly generating robust and functional code.
 
 
The second part of this piece picks up where I have left off here and first consider Data Architecture.
 

Part I Part II Part III

 
Notes

 
[1]
 
I have added some functions that were absent in the previous one, mostly as they were not central to the points I was making in the previous article.
 
[2]
 
My trilogy on Formatting a Data / Information Strategy has the following parts:

  1. Part I – General Strategy
  2. Part II – Situational Analysis
  3. Part III – Completing the Strategy
 
[3]
 
While this theme runs through most of my writing, it is most explicitly referenced in the following three articles:

  1. Marketing Change
  2. Education and Cultural Transformation
  3. Sustaining Cultural Change
 
[4]
 
It should be noted that the relationship management described here is not the same as a Project Manager covering progress against plan. This is more of a two way conversation to ensure that the Data Function remains cognisant of stakeholder needs
 
[5]
 
Though of course sometimes one-off analyses have value on an ongoing basis and so need to be productionised. In such cases the Analytics & Insight team would work with the Data Operations & Technology team to achieve this.
 
[6]
 
No citation needed.

 

From: peterjamesthomas.com, home of The Data and Analytics Dictionary

 

The revised and expanded Data and Analytics Dictionary

The Data and Analytics Dictionary

Since its launch in August of this year, the peterjamesthomas.com Data and Analytics Dictionary has received a welcome amount of attention with various people on different social media platforms praising its usefulness, particularly as an introduction to the area. A number of people have made helpful suggestions for new entries or improvements to existing ones. I have also been rounding out the content with some more terms relating to each of Data Governance, Big Data and Data Warehousing. As a result, The Dictionary now has over 80 main entries (not including ones that simply refer the reader to another entry, such as Linear Regression, which redirects to Model).

The most recently added entries are as follows:

  1. Anomaly Detection
  2. Behavioural Analytics
  3. Complex Event Processing
  4. Data Discovery
  5. Data Ingestion
  6. Data Integration
  7. Data Migration
  8. Data Modelling
  9. Data Privacy
  10. Data Repository
  11. Data Virtualisation
  12. Deep Learning
  13. Flink
  14. Hive
  15. Information Security
  16. Metadata
  17. Multidimensional Approach
  18. Natural Language Processing (NLP)
  19. On-line Transaction Processing
  20. Operational Data Store (ODS)
  21. Pig
  22. Table
  23. Sentiment Analysis
  24. Text Analytics
  25. View

It is my intention to continue to revise this resource. Adding some more detail about Machine Learning and related areas is probably the next focus.

As ever, ideas for what to include next would be more than welcome (any suggestions used will also be acknowledged).
 


 

From: peterjamesthomas.com, home of The Data and Analytics Dictionary

 

The peterjamesthomas.com Data and Analytics Dictionary

The Data and Analytics Dictionary

I find myself frequently being asked questions around terminology in Data and Analytics and so thought that I would try to define some of the more commonly used phrases and words. My first attempt to do this can be viewed in a new page added to this site (this also appears in the site menu):

The Data and Analytics Dictionary

I plan to keep this up-to-date as the field continues to evolve.

I hope that my efforts to explain some concepts in my main area of specialism are both of interest and utility to readers. Any suggestions for new entries or comments on existing ones are more than welcome.
 

 

Forming an Information Strategy: Part III – Completing the Strategy

Forming an Information Strategy
I – General Strategy II – Situational Analysis III – Completing the Strategy

Maybe we could do with some better information, but how to go about getting it? Hmm...

This article is the final of three which address how to formulate an Information Strategy. I have written a number of other articles which touch on this subject [1] and have also spoken about the topic [2]. However I realised that I had never posted an in-depth review of this important area. This series of articles seeks to remedy this omission.

The first article, Part I – General Strategy, explored the nature of strategy, laid some foundations and presented a framework of questions which will need to be answered in order to formulate any general strategy. The second, Part II – Situational Analysis, explained how to adapt the first element of this general framework – The Situational Analysis – to creating an Information Strategy. In Part I, I likened formulating an Information Strategy to a journey, Part III – Completing the Strategy sees us reaching the destination by working through the rest of the general framework and showing how this can be used to produce a fully-formed Information Strategy.

As with all of my other articles, this essay is not intended as a recipe for success, a set of instructions which – if slavishly followed – will guarantee the desired outcome. Instead the reader is invited to view the following as a set of observations based on what I have learnt during a career in which the development of both Information Strategies and technology strategies in general have played a major role.
 
 
A Recap of the Strategic Framework

Forth Rail Bridge
© www.thomashogben.co.uk

I closed Part I of this series by presenting a set of questions, the answers to which will facilitate the formation of any strategy. These have a geographic / journey theme and are as follows:

  1. Where are we?
  2. Where do we want to be instead and why?
  3. How do we get there, how long will it take and what will it cost?
  4. Will the trip be worth it?
  5. What else can we do along the way?

Part II explained the process of answering question 1 through the medium of a Situational Analysis. It is worth pointing out at this juncture that the Situational Analysis will also naturally form the first phase of the more lengthy process of gathering and analysing business requirements. For the purposes of the rest of this article, when such requirements are mentioned, they are taken as being the embryonic ones captured as part of the Situational Analysis.

In this final article I will focus on how to approach obtaining answers to questions 2 to 5. Having spent quite some time considering question 1 in the previous chapter, the content here will be somewhat briefer for the remaining questions; not least as I have covered some of this territory in earlier articles [3].
 
 
2. Where do we want to be instead and why?

My thoughts here split into two sub-sections. The second, What does Good look like?, is (as will be obvious from the title) more forward looking than backward. It covers reasons why the destination may be worth the journey. The first is more to do with why staying in the current location may not be a great idea [4]. However, one motivation for not staying put is that somewhere else may well be better. For this reason, there is not definitive border between these two sub-sections and it will be evident from the text that they instead bleed into each other.

2a. Drivers for Change

Change Next Exit

People often say that the gains that result from Information Programmes are intangible. Of course some may indeed be fairly intangible, but even the most ephemeral of these will not be entirely immune from some sort of valuation. Other benefits, when examined closely enough, can turn out to be surprisingly tangible [5]. In making a case for change (and of course the expenditure associated with this) it is good to try to have a balance of tangible and intangible factors. Here is a selection which may be applicable:

Internal IT drivers

  • These often centre around both the cost and confusion associated with a fragmented and inconsistent Information Landscape; something which, even as we head in to 2015, is still not atypical.
  • Opportunity costs may arise from an inability to combine data from different repositories or to roll up data to cover an entire organisation.
  • There is also a case to be made here around things like the licensing costs that result from having too many information repositories and too many tools being used to access them.
  • However, the cost of remediating such fragmentation can often appear in the shape of additional IT headcount devoted to maintaining a complex landscape and additional business headcount devoted to remediating information shortcomings.

Productivity gains

  • Less number crunching, more business-focussed analysis. Often an organisation’s most highly qualified (and highly paid) staff can spend much of their time repeating quotidian tasks that computers could do far more reliably. Freeing up such able and creative people to add more business value should be an objective and should have benefits.
  • At one company I estimated that teams would spend 5-7 days assembling the information necessary to support a meeting with one of a number of key business partners or a major client; our goal became to provide the same information effectively instantaneously; these types of benefits can be costed and also tend to resonate with business stakeholders.

Increasing sales / improving profitability

  • All information programmes (indeed most any business activity) should be dedicated to increasing profitability of course. In some specific industries the leverage of high-quality information is more readily associated with profitability than others. However, with enough time spent understanding the dynamics of an organisation, I would suggest that it is possible to make this linkage in a credible manner in pretty much any industry sector.
  • With respect to sales, sometimes if you want to increase say cross-selling, a very effective way is simply to measure it, maybe by department and salesperson. If there is some reliable way to track this, improvements in cross-selling will inevitably follow.

Mitigating operational risk

  • More reliable, unbiased and transparent production of information can address a number of operational risks; what these are specifically will vary from organisation to organisation.
  • However, most years see some organisation or another have to restate their results – there have been cases where adding two figures rather than subtracting them has led to a later restatement. Cases can often be built around the specific pain points in an organisation, or sometimes even near misses that were caught at the 11th hour.
  • Equally the cost of checking and re-checking figures before publication can be extremely high.

It is also generally worth asking business users what value they would ascribe to improved information, for example what things could they do under new arrangements that they cannot do now? It is important here that any benefits – and in particular any ones which prove to be intangible – are expressed in business language, not technical jargon.

2b. What does Good look like?

OK this dates me - I don't care!

Answering this question is predicated on both experience of successful information improvement programmes and a degree of knowledge about the general information market. There are two main elements here, what does good look like technically and what does it look like from a process / people perspective.

To cover the technical first, this is the simpler area, not least as we have understood how to develop robust, flexible and highly-performing information architectures for at least 15 years.

Integrated Information Architecture (click to view a larger version in a new tab)

The basics are shown in the diagram above [6]. Questions to consider here include:

  • What would a new information architecture look like?
  • What are the characteristics of the new which would indicate that it is an improvement on the old, can these be articulated to non-technical people?
  • What are required elements and how do they relate to the high-level needs captured in the Situational Analysis?
  • How does the proposed architecture relate to incumbent technologies and current staff skills?
  • Can any elements of existing information provision be leveraged, either temporarily or on an ongoing basis?
  • What has worked for other organisations and why would this be pertinent to the organisation in question?
  • Are any new developments in technology pertinent?

Arguably the more important area is the non-technical. Here there is a range of items to consider, some of which are captured in the following exhibit [7]:

Information Process (click to view a larger version  in a new tab)

I could spend an separate set of articles commenting on the elements of the above diagram; indeed I already have and interested readers are directed to the footnotes for links to some of these [8]. However it is worth pointing out the critical role to be played by both user education (a more apt phrase than training) and formal Data Governance. Also certain elements of information tend to work well when they sit within a regular business process; such as a monthly or quarterly review of specific aspects of results and future projections.
 
 
3. How do we get there, how long will it take and what will it cost?

Tube ticket machines

3a. Outline an Indicative Programme of Work

I am not going to offer Programme Planning 101 here, but briefly the first step in putting together an indicative programme of work is to decompose the overall journey into chunks, each of which can then be estimated. Each chunk should cover a group of reports / analyses and include activities from requirements gathering through to testing and finally deployment [9]. For the purposes of an indicative programme within a strategy document, the strategist can rely upon both information gathered in the Situational Analysis and their own experience of how to best decompose such work. Ultimately the size and number of the chunks should be dictated by business need, but at this stage estimates can be based upon experience and reasonable assumptions.

It is important that each chunk (or sub-chunk) delivers value and offers an opportunity for the approach and progress to be reviewed. A further factor to consider when estimating these chunks is that they should be delivered at a pace which allows them to be properly digested by users; resource allocations should reflect this. For each chunk the strategist should consider the type and quantum of resource required and the timing with which these are applied.

The indicative programme plan should also include a first phase which relates to reviewing the plan itself. Forming a strategy involves less people than running a programme. Even if initial estimation is carried out very diligently, it is likely that further issues will emerge once more detailed work later commences. As the information programme team ramps up, it is important that time is allocated for new team members to kick the tyres on the plan and make recommendations for improvement.

3b. How much will it cost?

Coins on scales

A big element of cost estimates will be a by-product of the indicative programme plan, which will cover programme duration and the amount of resource required at different points. Some further questions to consider when looking to catalogue costs include the following:

  • What are baseline costs for current information provision?
  • To what degree to these need to be incurred in parallel to an information improvement programme, are there ways to reduce these legacy costs to free up funds for the central programme?
  • What transitional costs are needed to execute the Information Strategy?
    • Hardware and software: is change necessary?
    • People: what is the best balance between internal, contract and outsourced resources, to what degree can existing staff be leveraged without compromising their current responsibilities?
    • How will costs vary by programme phase, will these taper as elements of older information systems are replaced by new facilities?
    • Can costs be reduced by having people play different roles at different points in the programme?
  • What costs will be ongoing once the strategy has been executed?
  • How do these compare to the current baseline?
  • Sometimes one aim of an Information Strategy will be to reduce to cost of ongoing support and maintenance, if so, how will this be achieved and how will any transition be managed?

A consideration here is whether the most important thing is to maximise speed of delivery or minimise risk? Things that will reduce risk could include: initial exploratory phases; starting with a small number of programme resources and increasing these based only on success; and instigating appropriate governance processes. However each of these will also increase duration and therefore cost. In some areas a trade off will be necessary and which side of these equations is more important will vary from organisation to organisation.
 
 
4. Will the trip be worth it?

Pros and cons

Answering parts of question 2 will help with getting a handle on potential benefits of executing an Information Strategy. Work on question 3 will get us an idea of the timeframes and costs involved. There is a need to combine the two of these into a cost / benefit analysis. This should be an honest and transparent assessment of the potential payback of adopting the Information Strategy. Given that most Information Strategies will take more than a year to implement and that benefits may equally be realised on an ongoing basis, it will generally make sense to look at figures over a 3-5 year period. It may be possible to draw up a quasi-P&L statement showing the impact of adopting the strategy, such an approach can resonate with senior stakeholders.

Points to recall and questions to consider here include:

  • Costs will emerge from the Indicative Programme Plan, but remember the ongoing costs of maintaining existing information capabilities.
  • As with most initiatives, the benefits of information programmes split into tangible and intangible components:
    • Where possible make benefits tangible even if this requires a degree of guesstimation [10].
    • Remember that many supposed intangibles can be estimated with some thought.
  • What benefits have other companies seen from similar programmes, particularly ones in the same industry sector?
  • Is it possible to perform “what if?” scenarios with current and future capabilities; could better information could have led to better outcomes? [11]
  • Ask business people to estimate the impact of better information.
  • Intangible benefits resonate where they are expressed in clear business language, not IT speak.

It should be borne in mind here that the cost / benefit analysis may not add up. If this is the case, then either a less expensive approach is more suitable for the company, or the potential benefits need to be looked at again. Where progress can genuinely not be made on either of these areas, the responsible strategist will acknowledge that doing nothing may well be the logical approach for the organisation in question.
 
 
5. What else can we do along the way?

Here be elephants

Finally, it is worth noting that short-term tactical deliveries can strongly support a strategy [12]. Interim work can meet urgent business needs in a timely manner. This is a substantial benefit in itself and also evidences progress in the area of improving information capabilities. It also demonstrates that that the programme team understands commercial pressures. This type of work is also complementary in that it can be used to:

  • Validate some elements of the cost / benefit analysis.
  • Round out requirements gathering.
  • Highlight any areas which have been overlooked.
  • Provide invaluable deployment and training experience, which can be leveraged for the implementation of more strategic capabilities.

It can also be useful make mistakes early and with small deliverables, not later with major ones. For these reasons, it is suggested that any Information Strategy should embrace “throw away” work. However this should be reflected in the overall programme plan and resources should be specifically allocated to this area. If this is not done, then tactical work can easily overwhelm the team and prevent progress on more strategic areas from being made; generally a death knell for a programme.
 
 
A Recap of the Main Points

  1. Carry out a Situational Analysis.
  2. As part of this, start the process of capturing High-level Business Requirements.
  3. Establish Drivers for Change, what benefits can be realised by better information, or by producing information in a better way?
  4. Ask “What Does Good Look Like?”, from both a technical and a process / people point of view.
  5. Develop an Indicative Programme of Work with realistic resource estimates and durations.
  6. Estimate Current, Transitional and Ongoing Costs.
  7. Itemise some of the major Interim Deliverables.
  8. Create a Cost / Benefits Analysis.

 
Bringing everything together

Chickie in dee Basget! Ing vurn spuur dee Chickie, Uun yeh vurn spay dee Basget!

There is a need to take the detailed work described over the course of the last three articles and the documentation which has been created as part of the process and to distill these down into a format that is digestible by senior management. There is no silver bullet here, summarising screeds of detail in a way that preserves the main points and presents them in a way that resonates is not easy. It takes judgement, an understanding of how businesses operate and strong analytical, writing and often diagrammatic skills. These will not be acquired by reading a blog article, but by honing experience and expertise over many years of work. To an extent, producing relevant and cogent summaries is where good IT professionals earn their money.

Unfortunately, at the time of writing, there is no book entitled Summarising Complex Issues for Dummies [13], [14].

This article and its two predecessors have been akin to listing the ingredients required to make a complex meal. While it is difficult to make great food without good ingredients or with some key spice missing, these things are not sufficient to ensure culinary excellence; what is also needed is a competent chef [15]. I cook a lot myself and, whenever I try a recipe for the first time, it can be a bit fraught. Sometimes I don’t get all of the elements of the meal ready at the same time, sometimes while I’m paying attention to reading the instructions for one part, another part boils over, or gets burnt. These problems with cooking tend dissipate with repetition. In the same way, what is generally needed in developing a sound Information Strategy is the equivalents great ingredients, a competent chef and an experienced one as well.
 

Forming an Information Strategy
I – General Strategy II – Situational Analysis III – Completing the Strategy

 
Notes

 
[1]
 
These include (in chronological order):

 
[2]
 
IRM European Data Warehouse and Business Intelligence Conference
– November 2012
 
[3]
 
Where this is the case, I will of course provide links back to my previous work.
 
[4]
 
Some of the factors here may come to light as a result of the previous Situational Analysis of course.
 
[5]
 
I grapple with estimating the potential payback of Information Programmes in a series of earlier articles:

 
[6]
 
This is an expanded version of the diagram I posted as part of Using multiple business intelligence tools in an implementation – Part I back in May 2009. I have elided details such as the fine structure of the warehouse (staging, relational, multidimensional etc.), master data sources and also which parts of it are accessed by different tools and different types of users. In a severe breach with the traditional IT approach, I have also left some arrows out.
 
[7]
 
This is an updated version of an exhibit I put together working with an actuarial colleague back in 2001, early in my journey into information improvement programmes.
 
[8]
 
These include my trilogy on the change management aspects of information programmes:

and a number of articles relating to Data Governance / Data Quality, notably:

 
[9]
 
Sometimes the first level of decomposition will need to be broken up into further and smaller chunks with this process iterating until the strategist reaches tasks which they are happy to estimate with a degree of certainty.
 
[10]
 
It may make sense to have different versions of the cost / benefit analysis, more conservative ones including only the most tangible benefits and more aggressive ones taking in to account benefits which have to be somewhat less certain.
 
[11]
 
Again see the series of three articles starting with Using historical data to justify BI investments – Part I.
 
[12]
 
For further thoughts on the strategic benefits of tactical work see:

 
[13]
 
Given both the two interpretations of this phrase and the typical audience for summaries of strategies, perhaps this is a fortunate thing.
 
[14]
 
I did however find the following title:

I can't however seem to find either Quantum Chromodynamics or Brain Surgery for Dummies

 
[15]
 
Contrary to the image above, a muppet (in the English sense of the word) won’t suffice.