Knowing what you do not Know

Measure twice cut once

As readers will have noticed, my wife and I have spent a lot of time talking to medical practitioners in recent months. The same readers will also know that my wife is a Structural Biologist, whose work I have featured before in Data Visualisation – A Scientific Treatment [1]. Some of our previous medical interactions had led to me thinking about the nexus between medical science and statistics [2]. More recently, my wife had a discussion with a doctor which brought to mind some of her own previous scientific work. Her observations about the connections between these two areas have formed the genesis of this article. While the origins of this piece are in science and medicine, I think that the learnings have broader applicability.


So the general context is a medical test, the result of which was my wife being told that all was well [3]. Given that humans are complicated systems (to say the very least), my wife was less than convinced that just because reading X was OK it meant that everything else was also necessarily OK. She contrasted the approach of the physician with something from her own experience and in particular one of the experiments that formed part of her PhD thesis. I’m going to try to share the central point she was making with you without going in to all of the scientific details [4]. However to do this I need to provide at least some high-level background.

Structural Biology is broadly the study of the structure of large biological molecules, which mostly means proteins and protein assemblies. What is important is not the chemical make up of these molecules (how many carbon, hydrogen, oxygen, nitrogen and other atoms they consist of), but how these atoms are arranged to create three dimensional structures. An example of this appears below:

The 3D structure of a bacterial Ribosome

This image is of a bacterial Ribosome. Ribosomes are miniature machines which assemble amino acids into proteins as part of the chain which converts information held in DNA into useful molecules [5]. Ribosomes are themselves made up of a number of different proteins as well as RNA.

In order to determine the structure of a given protein, it is necessary to first isolate it in sufficient quantity (i.e. to purify it) and then subject it to some form of analysis, for example X-ray crystallography, electron microscopy or a variety of other biophysical techniques. Depending on the analytical procedure adopted, further work may be required, such as growing crystals of the protein. Something that is generally very important in this process is to increase the stability of the protein that is being investigated [6]. The type of protein that my wife was studying [7] is particularly unstable as its natural home is as part of the wall of cells – removed from this supporting structure these types of proteins quickly degrade.

So one of my wife’s tasks was to better stabilise her target protein. This can be done in a number of ways [8] and I won’t get into the technicalities. After one such attempt, my wife looked to see whether her work had been successful. In her case the relative stability of her protein before and after modification is determined by a test called a Thermostability Assay.

Sigmoidal Dose Response Curve A
© University of Cambridge – reproduced under a Creative Commons 2.0 licence

In the image above, you can see the combined results of several such assays carried out on both the unmodified and modified protein. Results for the unmodified protein are shown as a green line [9] and those for the modified protein as a blue line [10]. The fact that the blue line (and more particularly the section which rapidly slopes down from the higher values to the lower ones) is to the right of the green one indicates that the modification has been successful in increasing thermostability.

So my wife had done a great job – right? Well things were not so simple as they might first seem. There are two different protocols relating to how to carry out this thermostability assay. These basically involve doing some of the required steps in a different order. So if the steps are A, B, C and D, then protocol #1 consists of A ↦ B ↦ C ↦ D and protocol #2 consists of A ↦ C ↦ B ↦ D. My wife was thorough enough to also use this second protocol with the results shown below:

Sigmoidal Dose Response Curve B
© University of Cambridge – reproduced under a Creative Commons 2.0 licence

Here we have the opposite finding, the same modification to the protein seems to have now decreased its stability. There are some good reasons why this type of discrepancy might have occurred [11], but overall my wife could not conclude that this attempt to increase stability had been successful. This sort of thing happens all the time and she moved on to the next idea. This is all part of the rather messy process of conducting science [12].

I’ll let my wife explain her perspective on these results in her own words:

In general you can’t explain everything about a complex biological system with one set of data or the results of one test. It will seldom be the whole picture. Protocol #1 for the thermostability assay was the gold standard in my lab before the results I obtained above. Now protocol #1 is used in combination with another type of assay whose efficacy I also explored. Together these give us an even better picture of stability. The gold standard shifted. However, not even this bipartite test tells you everything. In any complex system (be that Biological or a complicated dataset) there are always going to be unknowns. What I think is important is knowing what you can and can’t account for. In my experience in science, there is generally much much more that can’t be explained than can.

Belt and Braces [or suspenders if you are from the US, which has quite a different connotation in the UK!]

As ever translating all of this to a business context is instructive. Conscientious Data Scientists or business-focussed Statisticians who come across something interesting in a model or analysis will always try (where feasible) to corroborate this by other means; they will try to perform a second “experiment” to verify their initial findings. They will also realise that even two supporting results obtained in different ways will not in general be 100% conclusive. However the highest levels of conscientiousness may be more honoured in breach than observance [13]. Also there may not be an alternative “experiment” that can be easily run. Whatever the motivations or circumstances, it is not beyond the realm of possibility that some Data Science findings are true only in the same way that my wife thought she had successfully stabilised her protein before carrying out the second assay.

I would argue that business will often have much to learn from the levels of rigour customary in most scientific research [14]. It would be nice to think that the same rigour is always applied in commercial matters as academic ones. Unfortunately experience would tend to suggest the contrary is sometimes the case. However, it would also be beneficial if people working on statistical models in industry went out of their way to stress not only what phenomena these models can explain, but what they are unable to explain. Knowing what you don’t know is the first step towards further enlightenment.
 


 
Notes

 
[1]
 
Indeed this previous article had a sub-section titled Rigour and Scrutiny, echoing some of the themes in this piece.
 
[2]
 
See More Statistics and Medicine.
 
[3]
 
As in the earlier article, apologies for the circumlocution. I’m both looking to preserve some privacy and save the reader from boredom.
 
[4]
 
Anyone interested in more information is welcome to read her thesis which is in any case in the public domain. It is 188 pages long, which is reasonably lengthy even by my standards.
 
[5]
 
They carry out translation which refers to synthesising proteins based on information carried by messenger RNA, mRNA.
 
[6]
 
Some proteins are naturally stable, but many are not and will not survive purification or later steps in their native state.
 
[7]
 
G Protein-coupled Receptors or GPCRs.
 
[8]
 
Chopping off flexible sections, adding other small proteins which act as scaffolding, getting antibodies or other biological molecules to bind to the protein and so on.
 
[9]
 
Actually a sigmoidal dose-response curve.
 
[10]
 
For anyone with colour perception problems, the green line has markers which are diamonds and the blue line has markers which are triangles.
 
[11]
 
As my wife writes [with my annotations]:

A possible explanation for this effect was that while T4L [the protein she added to try to increase stability – T4 Lysozyme] stabilised the binding pocket, the other domains of the receptor were destabilised. Another possibility was that the introduction of T4L caused an increase in the flexibility of CL3, thus destabilising the receptor. A method for determining whether this was happening would be to introduce rigid linkers at the AT1R-T4L junction [AT1R was the protein she was studying, angiotensin II type 1 receptor], or other placements of T4L. Finally AT1R might exist as a dimer and the addition of T4L might inhibit the formation of dimers, which could also destabilise the receptor.

© University of Cambridge – reproduced under a Creative Commons 2.0 licence

 
[12]
 
See also Toast.
 
[13]
 
Though to be fair, the way that this phrase is normally used today is probably not what either Hamlet or Shakespeare intended by it back around 1600.
 
[14]
 
Of course there are sadly examples of specific scientists falling short of the ideals I have described here.

 

 

Elephants’ Graveyard?

Elephants' Graveyard
 
Introduction

My young daughter is very fond of elephants [1], as indeed am I, so I need to tread delicately here. I recent years, the world has been consumed with Big Data Fever [2] and this has been intimately entwined with Hadoop of yellow elephant fame. Clearly there are very many other products such as Apache [insert random word here] [3] which are part of the Big Data ecosystem, but it is Hadoop that has become synonymous with Big Data and indeed conflated with many of the other Big Data technologies.

Hadoop the Elephant

I have seen some successful and innovative Big Data projects and there are clearly many benefits associated with the cluster of technologies that this term is used to describe. There are also any number of paeans to this new paradigm a mouse click, or finger touch, away [4]; indeed I have featured some myself in these pages [5]. However, what has struck me of late is that a few less positive articles have been appearing. I come to neither bury, nor praise Hadoop [6], but merely to reflect on this development. I will also touch on recent rumours that one of the Apache tribe [7], specifically Spark, may be seeking an amicable divorce from Hadoop proper [8].

In doing this, I am going to draw on two articles in particular. First Hadoop Is Falling by George Hill (@IE_George) on The Innovation Enterprise. Second The Hadoop Honeymoon is Over [9] by Martyn Richard Jones (@GoodStratTweet) on LinkedIn.

However, before I leap into analysing other people’s thoughts I will present some of my own [very basic] research, care of Google Trends.
 
 
Eine Kleine Nachtgoogling

Below I display two charts (larger versions are but a click away) tracking the volume of queries in the 2014-16 period for two terms: “hadoop” and “apache spark” [10]. On the assumption that California tends to lead trends more than it follows, I have focussed in on this part of the US.

Hadoop searches

Spark searches

Note on axes: On this blog I have occasionally spoken about the ability of images to conceal information as well as to reveal it [11]. Lest I am accused of making the same mistake, normalising both sets of data in the above graphs could give the misleading impression that the peak volume of queries for “hadoop” and “apache spark” are equivalent. This is not so. The maximum number of weekly queries for “apache spark” in the three years examined is just under a fifth of the maximum number of queries for “hadoop” [12]. So, applying a rather broad rule of thumb, people searched for “hadoop” around five times more often. However, it was not the absolute number of queries that I was interested in, but how these change over time, so I think the approach I have taken is justified. If I had not normalised, it would have been difficult to pick out the “apache spark” trend in a combined graph.

The obvious inference to be drawn is that searches for Hadoop (in California at least) are declining and those for Spark are increasing; though maybe with a bit of a fall off in volume recently. Making a cast iron connection between trends in search and trends in industry is probably a mistake [13], but the discrepancies in the two trends are at least suggestive. In the Application Development Trends article I reference (note [8]) the author states:

The Spark momentum is so great that the technology — originally positioned as a replacement for MapReduce with added real-time capabilities and in-memory processing — could break free from the reins of the Hadoop universe and become its own independent tool.

This chimes with the AtScale findings I also reported here (note [5]), which included the observation that:

Organizations who have deployed Spark in production are 85% more likely to achieve value.

One conclusion (albeit a rather tentative one) could be that while Spark is on an upward trajectory and perhaps likely to step out of the Hadoop shadow, interest in Hadoop itself is at best plateauing and possibly declining. It is against this backdrop that I’ll now consider the two articles I introduced earlier.
 
 
Trouble with Trunks

Bad Elephant!

In his article, George Hill begins by noting that:

[Hadoop] adoption appears to have more or less stagnated, leading even James Kobielus [@jameskobielus], Big Data Evangelist at IBM Analytics [14], to claim that “Hadoop declined more rapidly in 2016 from the big-data landscape than I expected” [15]

In search for a reasons behind this apparent stagnation, he hypothesises that:

[A] cause for concern is simply that one man’s big data is another man’s small data. Hadoop is designed for huge amounts of data, and as Kashif Saiyed [@rizkashif] wrote on KD Nuggets [16] “You don’t need Hadoop if you don’t really have a problem of huge data volumes in your enterprise, so hundreds of enterprises were hugely disappointed by their useless 2 to 10TB Hadoop clusters – Hadoop technology just doesn’t shine at this scale.”

Most companies do not currently have enough data to warrant a Hadoop rollout, but did so anyway because they felt they needed to keep up with the Joneses. After a few years of experimentation and working alongside genuine data scientists, they soon realize that their data works better in other technologies.

Martyn Richard Jones weighs in on this issue in more provocative style when he says:

Hadoop has grown, feature by feature, as a response to specific technical challenges in specific and somewhat peculiar businesses. When it all kicked off, the developers weren’t thinking about creating a new generic data management architecture, one for handling massive amounts of data. They were thinking of how to solve specific problems. Then it rather got out of hand, and the piecemeal scope grew like topsy as did the multifarious ways to address the product backlog.

and aligns himself with Kashif Saiyed’s comments by adding:

It also turns out that, in spite of the babbling of the usual suspects, Big Data is not for everyone, not everyone needs it, and even if some businesses benefit from analysing their data, they can do smaller Big Data using conventional rock-solid, high-performance and proven database technologies, well-architected and packaged technologies that are in wide use.

I have been around the data space long enough to have seen a number of technologies emerge, each of which was touted as solving all known problems. These included Executive Information Systems, Relational Databases, Enterprise Resource Planning, Data Warehouses, OLAP, Business Intelligence Suites and Customer Relationship Management systems. All are useful tools, I have successfully employed each of them, but at the end of the day, they are all technologies and technologies don’t sort out problems, people do [17]. Big Data enables us to address some new problems (and revisit some old ones) in novel ways and lets us do things we could not do before. However, it is no more a universal panacea than anything that has preceded it.

Gartner Hype Cycle

Big Data seems to have disappeared off of the Gartner hype cycle in 2016, perhaps as it is now viewed as having become mainstream. However, back in August 2015, it was heading downhill fast towards the rather cataclysmically named Trough of Disillusionment [18]. This reflects the unwavering fact that no technology ever lives up to its initial hype. Instead, after a period of being over-sold and an inevitable reaction to this, technologies settle down and begin to be actually useful. It seems that Gartner believes that Big Data has already gone through this rite of passage; they may well be correct in this assertion.

Hill references this himself in one of his closing comments, while ending on a more positive note:

[…] it is not the platform in itself that has caused the current issues. Instead it is perhaps the hype and association of Big Data that has done the real damage. Companies have adopted the platform without understanding it and then failed to get the right people or data to make it work properly, which has led to disillusionment and its apparent stagnation. There is still a huge amount of life in Hadoop, but people just need to understand it better.

For me there are loud and clear echos of other technologies “failing” in the past in what Hill says [19]. My experience in these other cases is that, while technologies may not have lived up to implausible initial claims, when they do genuinely fail, it is often for reasons that are all too human [20].
 
 
Summary

A racquet is a tool, right?

I had considered creating more balance in this article by adding a section making the case for the defence. I then realised that this was actually a pretty pointless exercise. Not because Hadoop is in terminal decline and denial of this would be indefensible. Not because it must be admitted that Big Data is over-hyped and under-delivers. Cases could be made that both of those statements are either false, or at least do not tell the whole story. However I think that arguments like these are the wrong things to focus on. Let me try to explain why.

Back in 2009 I wrote an article with the title A bad workman blames his [Business Intelligence] tools. This considered the all-too-prevalent practice in rock climbing and bouldering circles of buying the latest and greatest kit and assuming that performance gains would follow from this, as opposed to doing the hard work of training and practice (the same phenomenon occurs in other sports of course). I compared this to BI practitioners relying on technology as a crutch rather than focussing on four much more important things:

  1. Determining what information is necessary to drive key business decisions.
     
  2. Understanding the various data sources that are available and how they relate to each other.
     
  3. Transforming the data to meet the information needs.
     
  4. Managing the embedding of BI in the corporate culture.

I am often asked how relevant my heritage articles are to today’s world of analytics, data management, machine learning and AI. My reply is generally that what has changed is technology and little else [21]. This means that what was relevant back in 2009 remains relevant today; sometimes more so. The only area with a strong technological element in the list of four I cite above is number 3. I would agree that a lot has happened in the intervening years around how this piece can be effected. However, nothing has really changed in the other areas. We may call business questions use cases or user stories today, but they are the same thing. You still can’t really leverage data without attempting to understand it first. The need for good communication about data projects, high-quality education and strong follow-up is just as essential as it ever was.

Below I have taken the liberty of editing my own text, replacing the terms that were prevalent in data and information circles then, with the current ones.

Well if you want people to actually use analytics capabilities, it helps if the way that the technology operates is not a hindrance to this. Ideally the ease-of-use and intuitiveness of the analytical platform deployed should be a plus point for you. However, if you have the ultimate in data technology, but your analytics do not highlight areas that business people are interested in, do not provide information that influences actual decision-making, or contain numbers that are inaccurate, out-of-date, or unreconciled, then they will not be used.

I stand by these sentiments seven or eight years later. Over time the technology and terminology we use both change. I would argue that the essentials that determine success or failure seldom do.

Let’s take the undeniable hype cycle effect to one side. Let’s also discount overreaching claims that Hadoop and its related technologies are Swiss Army Knives, capable of dealing with any data situation. Let’s also set aside the string of technical objections that Martyn Richard Jones raises. My strong opinion is that when Hadoop (or Spark or the next great thing) fails, it will again most likely be a case of bad workmen blaming their tools; just as they did back in 2009.
 


 
Notes

 
[1]
 
As was Doug Cutting‘s son back in 2006. Rather than being yellow, my daughter’s favourite pachyderm is blue and called “Dee”, my wife and I have no idea why.
 
[2]
 
WHO have described the Big Data Fever situation as follows:

Phase 6, the pandemic phase, is characterized by community level outbreaks in at least one other country in a different WHO region in addition to the criteria defined in Phase 5. Designation of this phase will indicate that a global pandemic is under way.

 
[3]
 
Pick any one of: Cassandra, Flink, Flume, HBase, Hive, Impala, Kafka, Oozie, Phoenix, Pig, Spark, Sqoop, Storm and ZooKeeper.
 
[4]
 
You could start with the LinkedIn Big Data Channel.
 
[5]
 
Do any technologies grow up or do they only come of age?
 
[6]
 
The evil that open-source frameworks do lives after them; The good is oft interred with their source code; So let it be with Hadoop.
 
[7]
 
Perhaps not very respectful to Native American sensibilities, but hard to resist. No offence is intended.
 
[8]
 
Spark Poised To Break from Hadoop, Move to Cloud, Survey Says, Application Development Trends.
 
[9]
 
While functioning at the point that this article was originally written, it now appears that Martyn Richard Jones’s LinkedIn account has been suspended and the article I refer to is no longer available. The original URL was https://www.linkedin.com/pulse/hadoop-honeymoon-over-martyn-jones. I’m not sure what the issue is and whether or not the article may reappear at some later point.
 
[10]
 
A couple of points here. As “spark” is a word in common usage, the qualifier of “apache” is necessary. On the contrary, “hadoop” is not a name that is used for much beyond yellow elephants and so no qualifier is required. I could have used “apache hadoop” as the comparator, but instances of this are less frequent than for just “hadoop”. For what it is worth, although the number of queries for “apache hadoop” are fewer, the trend over time is pretty much the same as for just “hadoop”.
 
[11]
 
For example:

 
[12]
 
18% to be precise.
 
[13]
 
Though quite a few people make a nice living doing just that.
 
[14]
 
“IBM Software” in the original article, corrected to “IBM Analytics” here.
 
[15]
 
Big Data: Main Developments in 2016 and Key Trends in 2017, KD Nuggets.
 
[16]
 
Why Not So Hadoop?, KD Nuggets.
 
[17]
 
Though admittedly nowadays people sometimes sort problems by writing algorithms for machines to run, which then come up with the answer.
 
[18]
 
Which has always felt to me that it should appear on a papyrus map next to a “here be dragons” legend.
 
[19]
 
For example as in “Why Business Intelligence projects fail”.
 
[20]
 
It’s worth counting how many of the risks I enumerate in 20 Risks that Beset Data Programmes are human-centric (hint: its a multiple of ten biger than 15 and smaller than 25).
 
[21]
 
I might be tempted to answer a little differently when it comes to Artificial Intelligence.

 

 

Bigger and Better (Data)?

Is bigger really better

I was browsing Data Science Central [1] recently and came across an article by Bill Vorhies, President & Chief Data Scientist of Data-Magnum. The piece was entitled 7 Cases Where Big Data Isn’t Better and is worth a read in full. Here I wanted to pick up on just a couple of Bill’s points.

In his preamble, he states:

Following the literature and the technology you would think there is universal agreement that more data means better models. […] However […] it’s always a good idea to step back and examine the premise. Is it universally true that our models will be more accurate if we use more data? As a data scientist you will want to question this assumption and not automatically reach for that brand new high-performance in-memory modeling array before examining some of these issues.

Bill goes on to make several pertinent points including: that if your data is bad, having more of it is not necessarily a solution; that attempting to create a gigantic and all-purpose model may well be inferior to multiple, more targeted models on smaller sub-sets of data; and that there exist specific instances where a smaller data sets yields greater accuracy [2]. However I wanted to pick up directly on Bill’s point 6 of 7, in which he also references Larry Greenemeier (@lggreenemeier) of Scientific American.

  Bill Vorhies   Larry Greenemeier  

6. Sometimes We Get Hypnotized By the Overwhelming Volume of the Data and Forget About Data Provenance and Good Project Design

A few months back I reviewed an article by Larry Greenemeier [3] about the failure of Google Flu Trend analysis to predict the timing and severity of flu outbreaks based on social media scraping. It was widely believed that this Big Data volume of data would accurately predict the incidence of flu but the study failed miserably missing timing and severity by a wide margin.

Says Greenemeier, “Big data hubris is the often the implicit assumption that big data are a substitute for, rather than a supplement to, traditional data collection and analysis. The mistake of many big data projects, the researchers note, is that they are not based on technology designed to produce valid and reliable data amenable for scientific analysis. The data comes from sources such as smartphones, search results and social networks rather than carefully vetted participants and scientific instruments”.

Perhaps more pertinent to a business environment, Greenemeier’s article also states:

Context is often lacking when info is pulled from disparate sources, leading to questionable conclusions.

Ruler

Neither of these authors is saying that having greater volumes of data is a definitively bad thing; indeed Vorhies states:

In general would I still prefer to have more data than less? Yes, of course.

They are however both pointing out that, in some instances, more traditional statistical methods, applied to smaller data sets yield superior results. This is particularly the case where data are repurposed and the use to which they are put is different to the considerations when they were collected; something which is arguably more likely to be the case where general purpose Big Data sets are leveraged without reference to other information.

Also, when large data sets are collated from many places, the data from each place can have different characteristics. If this variation is not controlled for in models, it may well lead to erroneous findings.

Statistical Methods

Their final observation is that sound statistical methodology needs to be applied to big data sets just as much as more regular ones. The hope that design flaws will simply evaporate when data sets get large enough may be seducing, but it is also dangerously wrong.

Vorhies and Greenemeier are not suggesting that Big Data has no value. However they state that one of its most potent uses may well be as a supplement to existing methods, perhaps extending them, or bringing greater granularity to results. I view such introspection in Data Science circles as positive, likely to lead to improved methods and an indication of growing maturity in the field. It is however worth noting that, in some cases, leverage of Small-but-Well-Designed Data [4] is not only effective, but actually a superior approach. This is certainly something that Data Scientists should bear in mind.
 


 
Notes

 
[1]
 
I’d recommend taking a look at this site regularly. There is a high volume of articles and the quality is variable, but often there are some stand-out pieces.
 
[2]
 
See the original article for the details.
 
[3]
 
The article was in Scientific American and entitled Why Big Data Isn’t Necessarily Better Data.
 
[4]
 
I may have to copyright this term and of course the very elegant abridgement, SBWDD.

 

 

A Sweeter Spot for the CDO?

Home run

I recently commented on an article by Bruno Aziza (@brunoaziza) from AtScale [1]. As mentioned in this earlier piece, Bruno and I have known each other for a while. After I published my article – and noting my interest in all things CDO [2] – he dropped me a line, drawing my attention to a further piece he had penned: CDOs: They Are Not Who You Think They Are. As with most things Bruno writes, I’d suggest it merits taking a look. Here I’m going to pick up on just a few pieces.

First of all, Bruno cites Gartner saying that:

[…] they found that there were about 950 CDOs in the world already.

In one way that’s a big figure, in another, it is a small fraction of the at least medium-sized companies out there. So it seems that penetration of the CDO role still has some way to go.

Bruno goes on to list a few things which he believes a CDO is not (e.g. a compliance officer, a finance expert etc.) and suggests that the CDO role works best when reporting to the CEO [3], noting that:

[…] every CEO that’s not analytically driven will have a hard time gearing its company to success these days.

He closes by presenting the image I reproduce below:

CDO Venn Diagram [borrowed from AtScale]

and adding the explanatory note:

  • The CDO is at the intersection of Innovation, Compliance and Data Expertise. When all he/she just does is compliance, it’s danger. They will find resistance at first and employees will question the value the CDO office adds to the company’s bottom line.

First of all kudos for a correct use of the term Venn Diagram [4]. Second I agree that the role of CDO is one which touches on many different areas. In each of these, while as Bruno says, the CDO may not need to be an expert, a working knowledge would be advantageous [5]. Third I wholeheartedly support the assertion that a CDO who focusses primarily on compliance (important as that may well be) will fail to get traction. It is only by blending compliance work with the leveraging of data for commercial advantage in which organisations will see value in what a CDO does.

Finally, Bruno’s diagram put me in mind of the one I introduced in The Chief Data Officer “Sweet Spot”. In this article, the image I presented touched each of the principle points of a compass (North, South, East and West). My assertion was that the CDO needed to sit at the sweet spot between respectively Data Synthesis / Data Compliance and Business Expertise / Technical Expertise. At the end of this piece, I suggested that in reality the intervening compass points (North West, South East, North East and South West) should also appear, reflecting other spectrums that the CDO needs to straddle. Below I have extended my earlier picture to include these other points and labeled the additional extremities between which I think any successful CDO must sit. Hopefully I have done this in a way that is consistent with Bruno’s Venn diagram.

Expanded CDO Sweet Spot

The North East / South West axis is one I mentioned in passing in my earlier text. While in my experience business is seldom anything but usual, BAU has slipped into the lexicon and it’s pointless to pretend that it hasn’t. Equally Change has come to mean big and long-duration change, rather than the hundreds of small changes that tend to make up BAU. In any case, regardless of the misleading terminology, the CDO must be au fait with both types of activity. The North West / South East axis is new and inspired by Bruno’s diagram. In today’s business climate, I believe that the successful CDO must be both innovative and have an ability to deliver on ideas that he or she generates.

As I have mentioned before, finding someone who sits at the nexus of either Bruno’s diagram or mine is not a trivial exercise. Equally, being a CDO is not a simple job; then very few worthwhile things are easy to achieve in my experience.
 


 
Notes

 
[1]
 
Do any technologies grow up or do they only come of age?
 
[2]
 
A selection of CDO-centric articles, in chronological order:

* At least that’s the term I was using to describe what is now called a Chief Data Officer back in 2009.

 
[3]
 
Theme #1 in 5 Themes from a Chief Data Officer Forum
 
[4]
 
I have got this wrong myself in these very pages, e.g. in A Single Version of the Truth?, in the section titled Ordo ab Chao. I really, really ought to know better!
 
[5]
 
I covered some of what I see as being requirements of the job in Wanted – Chief Data Officer.

 

 

Predictions about Prediction

2017 the Road Ahead [Borrowed from Eckerson Group]

   
“Prediction and explanation are exactly symmetrical. Explanations are, in effect, predictions about what has happened; predictions are explanations about what’s going to happen.”

– John Rogers Searle

 

The above image is from Eckerson Group‘s article Predictions for 2017. Eckerson Group’s Founder and Principal Consultant, Wayne Eckerson (@weckerson), is someone whose ideas I have followed on-line for several years; indeed I’m rather surprised I have not posted about his work here before today.

As was possibly said by a variety of people, “prediction is very difficult, especially about the future” [1]. I did turn my hand to crystal ball gazing back in 2009 [2], but the Eckerson Group’s attempt at futurology is obviously much more up-to-date. As per my review of Bruno Aziza’s thoughts on the AtScale blog, I’m not going to cut and paste the text that Wayne and his associates have penned wholesale, instead I’d recommend reading the original article.

Here though are a number of points that caught my eye, together with some commentary of my own (the latter appears in italics below). I’ll split these into the same groups that Wayne & Co. use and also stick to their indexing, hence the occasional gaps in numbering. Where I have elided text, I trust that I have not changed the intended meaning:
 
 
Data Management

Data Management

1. The enterprise data marketplace becomes a priority. As companies begin to recognize the undesirable side effects of self-service they are looking for ways to reap self-service benefits without suffering the downside. […] The enterprise data marketplace returns us to the single-source vision that was once touted as the real benefit of Enterprise Data Warehouses.
  I’ve always thought of self-service as something of a cop-out. It tends to avoid data teams doing anything as arduous (and in some cases out of their comfort zone) as understanding what makes a business tick and getting to grips with the key questions that an organisation needs to answer in order to be successful [3]. With this messy and human-centric stuff out of the way, the data team can retreat into the comfort of nice orderly technological matters or friendly statistical models.

However, what Eckerson Group describe here is “an Amazon-like data marketplace”, which it seems to me has more of a chance of being successful. However, such a marketplace will only function if it embodies the same focus on key business questions and how they are answered. The paradigm within which such questions are framed may be different, more community based and more federated for example, but the questions will still be of paramount importance.

 
3.
 
New kinds of data governance organizations and practices emerge. Long-standing, command-and-control data governance practices fail to meet the challenges of big data and of data democratization. […]
  I think that this is overdue. To date Data Governance, where it is implemented at all, tends to be too police-like. I entirely agree that there are circumstances in which a Data Governance team or body needs to be able to put its foot down [4], but if all that Data Governance does is police-work, then it will ultimately fail. Instead good Data Governance needs to recognise that it is part of a much more fluid set of processes [5], whose aim is to add business value; to facilitate things being done as well as sometimes to stop the wrong path being taken.

 
Data Science

Data Science

1. Self-service and automated predictive analytics tools will cause some embarrassing mistakes. Business users now have the opportunity to use predictive models but they may not recognize the limits of the models themselves. […]
  I think this is a very valid point. As well as not understanding the limitations of some models [6], there is not widespread understanding of statistics in many areas of business. The concept of a central prediction surrounded by different outcomes with different probabilities is seldom seen in commercial circles [7]. In addition there seems to be a lack of appreciation of how big an impact the statistical methodology employed can have on what a model tells you [8].

 
Business Analytics

Business Analytics

1. Modern analytic platforms dominate BI. Business intelligence (BI) has evolved from purpose-built tools in the 1990s to BI suites in the 2000s to self-service visualization tools in the 2010s. Going forward, organizations will replace tools and suites with modern analytics platforms that support all modes of BI and all types of users […]
  Again, if it comes to fruition, such consolidation is overdue. Ideally the tools and technologies will blend into the background, good data-centric work is never about the technology and always about the content and the efforts involved in ensuring that it is relevant, accurate, consistent and timely [9]. Also information is often of most use when it is made available to people taking decisions at the precise point that they need it. This observation highlights the need for data to be integrated into systems and digital estates instead of simply being bound to an analytical hub.

 
So some food for thought from Wayne and his associates. The points they make (including those which I haven’t featured in this article) are serious and well-thought-out ones. It will be interesting to see how things have moved on by the beginning of 2018.
 


 
Notes

 
[1]
 
According to WikiQuotes, this has most famously been attributed to Danish theoretical physicist and father of Quantum Mechanics, Niels Bohr (in Teaching and Learning Elementary Social Studies (1970) by Arthur K. Ellis, p. 431). However it has also been ascribed to various humourists, the Danish poet Piet Hein: “det er svært at spå – især om fremtiden” and Danish cartoonist Storm P (Robert Storm Petersen). Perhaps it is best to say that a Dane made the comment and leave it at that.

Of course similar words have also been said to have been originated by Yogi Berra, but then that goes for most malapropisms you could care to mention. As Mr Berra himself says “I really didn’t say everything I said”.

 
[2]
 
See Trends in Business Intelligence. I have to say that several of these have come to pass, albeit sometimes in different ways to the ones I envisaged back then.
 
[3]
 
For a brief review of what is necessary see What should companies consider before investing in a Business Intelligence solution?
 
[4]
 
I wrote about the unpleasant side effects of a Change Programmes unfettered by appropriate Data Governance in Bumps in the Road, for example.
 
[5]
 
I describe such a set of processes in Data Management as part of the Data to Action Journey.
 
[6]
 
I explore some simmilar territory to that presented by Eckerson Group in Data Visualisation – A Scientific Treatment.
 
[7]
 
My favourite counterexample is provided by The Bank of England.

The Old Lady of Threadneedle Street is clearly not a witch
An inflation prediction from The Bank of England
Illustrating the fairly obvious fact that uncertainty increases in proportion to time from now.
 
[8]
 
This is an area I cover in An Inconvenient Truth.
 
[9]
 
I cover this assertion more fully in A bad workman blames his [Business Intelligence] tools.

 

 

20 Risks that Beset Data Programmes

Data Programme Risks

This article draws extensively on elements of the framework I use to both highlight and manage risks on data programmes. It has its genesis in work that I did early in 2012 (but draws on experience from the years before this). I have tried to refresh the content since then to reflect new thinking and new developments in the data arena.
 
 
Introduction

What are my motivations in publishing this article? Well I have both designed and implemented data and information programmes for over 17 years. In the majority of cases my programme work has been a case of executing a data strategy that I had developed myself [1]. While I have generally been able to steer these programmes to a successful outcome [2], there have been both bumps in the road and the occasional blind alley, requiring a U-turn and another direction to be selected. I have also been able to observe data programmes that ran in parallel to mine in different parts of various organisations. Finally, I have often been asked to come in and address issues with an existing data programme; something that appears to happens all too often. In short I have seen a lot of what works and what does not work. Having also run other types of programmes [3], I can also attest to data programmes being different. Failure to recognise this difference and thus approaching a data programme just like any other piece of work is one major cause of issues [4].

Before I get into my list proper, I wanted to pause to highlight a further couple of mistakes that I have seen made more than once; ones that are more generic in nature and thus don’t appear on my list of 20 risks. The first is to assume that the way that an organisation’s data is controlled and leveraged can be improved in a sustainable way by just kicking off a programme. What is more important in my experience is to establish a data function, which will then help with both the governance and exploitation of data. This data function, ideally sitting under a CDO, will of course want to initiate a range of projects, from improving data quality, to sprucing up reporting, to establishing better analytical capabilities. Best practice is to gather these activities into a programme, but things work best if the data function is established first, owns such a programme and actively partakes in its execution.

Data is for life...

As well as the issue of ongoing versus transitory accountability for data and the undoubted damage that poorly coordinated change programmes can inflict on data assets, another driver for first establishing a data function is that data needs will always be there. On the governance side, new systems will be built, bought and integrated, bringing new data challenges. On the analytical side, there will always be new questions to be answered, or old ones to be reevaluated. While data-centric efforts will generate many projects with start and end dates, the broad stream of data work continues on in a way that, for example, the implementation of a new B2C capability does not.

The second is to believe that you will add lasting value by outsourcing anything but targeted elements of your data programme. This is not to say that there is no place for such arrangements, which I have used myself many times, just that one of the lasting benefits of gimlet-like focus on data is the IP that is built up in the data team; IP that in my experience can be leveraged in many different and beneficial ways, becoming a major asset to the organisation [5].

Having made these introductory comments, let’s get on to the main list, which is divided into broadly chronological sections, relating to stages of the programme. The 10 risks which I believe are either most likely to materialise, or which will probably have the greatest impact are highlighted in pale yellow.
 
 
Up-front Risks

In the beginning

Risk Potential Impact
1. Not appreciating the size of work for both business and technology resources. Team is set up to fail – it is neither responsive enough to business needs (resulting in yet more “unofficial” repositories and additional fragmentation), nor is appropriate progress is made on its central objective.
2. Not establishing a dedicated team. The team never escapes from “the day job” or legacy / BAU issues; the past prevents the future from being built.
3. Not establishing a unified and collaborative team. Team is plagued by people pursuing their own agendas and trashing other people’s approaches, this consumes management time on non-value-added activities, leads to infighting and dissipates energy.
4. Staff lack skills and prior experience of data programmes. Time spent educating people rather than getting on with work. Sub-optimal functionality, slippages, later performance problems, higher ongoing support costs.
5. Not establishing an appropriate management / governance structure. Programme is not aligned with business needs, is not able to get necessary time with business users and cannot negotiate the inevitable obstacles that block its way. As a result, the programme gets “stuck in the mud”.
6. Failing to recognise ongoing local needs when centralising. Local business units do not have their pressing needs attended to and so lose confidence in the programme and instead go their own way. This leads to duplication of effort, increased costs and likely programme failure.

With risk 2 an analogy is trying to build a house in your spare time. If work can only be done in evenings or at the weekend, then this is going to take a long time. Nevertheless organisations too frequently expect data programmes to be absorbed in existing headcount and fitted in between people’s day jobs.

We can we extend the building metaphor to cover risk 4. If you are going to build your own house, it would help that you understand carpentry, plumbing, electricals and brick-laying and also have a grasp on the design fundamentals of how to create a structure that will withstand wind rain and snow. Too often companies embark on data programmes with staff who have a bit of a background in reporting or some related area and with managers who have never been involved in a data programme before. This is clearly a recipe for disaster.

Risk 5 reminds us that governance is also important – both to ensure that the programme stays focussed on business needs and also to help the team to negotiate the inevitable obstacles. This comes back to a successful data programme needing to be more than just a technology project.
 
 
Programme Execution Risks

Programme execution

Risk Potential Impact
7. Poor programme management. The programme loses direction. Time is expended on non-core issues. Milestones are missed. Expenditure escalates beyond budget.
8. Poor programme communication. Stakeholders have no idea what is happening [6]. The programme is viewed as out of touch / not pertinent to business issues. Steering does not understand what is being done or why. Prospective users have no interest in the programme.
9. Big Bang approach. Too much time goes by without any value being created. The eventual Big Bang is instead a damp squib. Large sums of money are spent without any benefits.
10. Endless search for the perfect solution / adherence to overly theoretical approaches. Programme constantly polishes rocks rather than delivering. Data models reflect academic purity rather than real-world performance and maintenance needs.
11. Lack of focus on interim deliverables. Business units become frustrated and seek alternative ways to meet their pressing needs. This leads to greater fragmentation and reputational damage to programme.
12. Insufficient time spent understanding source system data and how data is transformed as it flows between systems. Data capabilities that do not reflect business transactions with fidelity. There is inconsistency with reports directly drawn from source systems. Reconciliation issues arise (see next point).
13. Poor reconciliation. If analytical capabilities do not tell a consistent story, they will not be credible and will not be used.
14. Strong approach to data quality. Data facilities are seen as inaccurate because of poor data going into them. Data facilities do not match actual business events due to either massaging of data or exclusion of transactions with invalid attributes.

Probably the single most common cause of failure with data programmes – and indeed or ERP projects and acquisitions and any other type of complex endeavour – is risk 7, poor programme management. Not only do programme managers have to be competent, they should also be steeped in data matters and have a good grasp of the factors that differentiate data programmes from more general work.

Relating to the other highlighted risks in this section, the programme could spend two years doing work without surfacing anything much and then, when they do make their first delivery, this is a dismal failure. In the same vein, exclusive focus on strategic capabilities could prevent attention being paid to pressing business needs. At the other end of the spectrum, interim deliveries could spiral out of control, consuming all of the data team’s time and meaning that the strategic objective is never reached. A better approach is that targeted and prioritised interims help to address pressing business needs, but also inform more strategic work. From the other perspective, progress on strategic work-streams should be leveraged whenever it can be, perhaps in less functional manners that the eventual solution, but good enough and also helping to make sure that the final deliveries are spot on [7].
 
 
User Requirement Risks

Dear Santa

Risk Potential Impact
15. Not enough up-front focus on understanding key business decisions and the information necessary to take them. Analytic capabilities do not focus on what people want or need, leading to poor adoption and benefits not being achieved.
16. In the absence of the above, the programme becoming a technology-driven one. The business gets what IT or Change think that they need, not what is actually needed. There is more focus on shiny toys than on actionable information. The programme forgets the needs of its customers.
17. A focus on replicating what the organisation already has but in better tools, rather than creating what it wants. Beautiful data visualisations that tell you close to nothing. Long lists of existing reports with their fields cross-referenced to each other and a new solution that is essentially the lowest common denominator of what is already in place; a step backwards.

The other most common reasons for data programme failure is a lack of focus on user needs and insufficient time spent with business people to ensure that systems reflect their requirements [8].
 
 
Integration Risk

Lego

Risk Potential Impact
18. Lack of leverage of new data capabilities in front-end / digital systems. These systems are less effective. The data team is jealous about its capabilities being the only way that users should get information, rather than adopting a more pragmatic and value-added approach.

It is important for the data team to realise that their work, however important, is just one part of driving a business forward. Opportunities to improve other system facilities by the leverage of new data structures should be taken wherever possible.
 
 
Deployment Risks

Education

Risk Potential Impact
19. Education is an afterthought, training is technology- rather than business-focused. People neither understand the capabilities of new analytical tools, nor how to use them to derive business value. Again this leads to poor adoption and little return on investment.
20. Declaring success after initial implementation and training. Without continuing to water the immature roots, the plant withers. Early adoption rates fall and people return to how they were getting information pre-launch. This means that the benefits of the programme not realised.

Finally excellent technical work needs to be complemented with equal attention to business-focussed education, training using real-life scenarios and assiduous follow up. These things will make or break the programme [9].
 
 
Summary.

Of course I don’t claim that the above list is exhaustive. You could successfully mitigate all of the above risks on your data programme, but still get sunk by some other unforeseen problem arising. There is a need to be flexible and to adapt to both events and how your organisation operates; there are no guarantees and no foolproof recipes for success [10].

My recommendation to data professionals is to develop your own approach to risk management based on your own experience, your own style and the culture within which you are operating. If just a few of the items on my list of risks can be usefully amalgamated into this, then I will feel that this article has served its purpose. If you are embarking on a data programme, maybe your first one, then be warned that these are hard and your reserves of perseverance will be tested. I’d suggest leveraging whatever tools you can find in trying to forge ahead.

It is also maybe worth noting that, somewhat contrary to my point that data programmes are different, a few of the risks that I highlight above could be tweaked to apply to more general programmes as well. Hopefully the things that I have learnt over the last couple of decades of running data programmes will be something that can be of assistance to you in your own work.
 


 
Notes

 
[1]
 
For my thoughts on developing data (or interchangeably) information strategies see:

  1. Forming an Information Strategy: Part I – General Strategy
  2. Forming an Information Strategy: Part II – Situational Analysis and
  3. Forming an Information Strategy: Part III – Completing the Strategy

or the CliffsNotes versions of these on LinkedIn:

  1. Information Strategy: 1) General Strategy
  2. Information Strategy: 2) Situational Analysis and
  3. Information Strategy: 3) Completing the Strategy
 
[2]
 
Indeed sometimes an award-winning one.
 
[3]
 
An abridged list would include:

  • ERP design, development and implementation
  • ERP selection and implementation
  • CRM design, development and implementation
  • CRM selection and implementation
  • Integration of acquired companies
  • Outsourcing of systems maintenance and support
 
[4]
 
For an examination of this area you can start with A more appropriate metaphor for Business Intelligence projects. While written back in 2008-9 the content of this article is as pertinent today as it was back then.
 
[5]
 
I cover this area in greater detail in Is outsourcing business intelligence a good idea?
 
[6]
 
Stakeholder

Probably a bad idea to make this stakeholder unhappy (see also Themes from a Chief Data Officer Forum – the 180 day perspective, note [3]).

 
[7]
 
See Vision vs Pragmatism, Holistic vs Incremental approaches to BI and Tactical Meandering for further background on this area.
 
[8]
 
This area is treated in the strategy articles appearing in note [1] above. In addition, some potential approaches to elements of effective requirements gathering are presented in Scaling-up Performance Management and Developing an international BI strategy.
 
[9]
 
Of pertinence here is my trilogy on the cultural transformation aspects of information programmes:

  1. Marketing Change
  2. Education and cultural transformation
  3. Sustaining Cultural Change
 
[10]
 
Something I stress forcibly in Recipes for Success?

 

 

Toast

Acrylamide [borrowed from Wikipedia]

Foreword

This blog touches on a wide range of topics, including social media, cultural transformation, general technology and – last but not least – sporting analogies. However, its primary focus has always been on data and information-centric matters in a business context. Having said this, all but the more cursory of readers will have noted the prevalence of pieces with a Mathematical or Scientific bent. To some extent this is a simple reflection of the author’s interests and experience, but a stronger motivation is often to apply learnings from different fields to the business data arena. This article is probably more scientific in subject matter than most, but I will also look to highlight some points pertinent to commerce towards the end.
 
 
Introduction

In Science We Trust?

The topic I want to turn my attention to in this article is public trust in science. This is a subject that has consumed many column inches in recent years. One particular area of focus has been climate science, which, for fairly obvious political reasons, has come in for even more attention than other scientific disciplines of late. It would be distracting to get into the arguments about climate change and humanity’s role in it here [1] and in a sense this is just the latest in a long line of controversies that have somehow become attached to science. An obvious second example here is the misinformation circling around both the efficacy and side effects of vaccinations [2]. In both of these cases, it seems that at least a sizeable minority of people are willing to query well-supported scientific findings. In some ways, this is perhaps linked to the general mistrust of “experts” and “elites” [3] that was explicitly to the fore in the UK’s European Union Referendum debate [4].

“People in this country have had enough of experts”

– Michael Gove [5], at this point UK Justice Secretary and one of the main proponents of the Leave campaign, speaking on Sky News, June 2016.

Mr Gove was talking about economists who held a different point of view to his own. However, his statement has wider resonance and cannot be simply dismissed as the misleading sound-bite of an experienced politician seeking to press his own case. It does indeed appear that in many places around the world experts are trusted much less than they used to be and that includes scientists.

“Many political upheavals of recent years, such as the rise of populist parties in Europe, Donald Trump’s nomination for the American presidency and Britain’s vote to leave the EU, have been attributed to a revolt against existing elites.”

The Buttonwood column, The Economist, September 2016.

Why has this come to be?
 
 
A Brief [6] History of the Public Perception of Science

Public Perception

Note: This section is focussed on historical developments in the public’s trust in science. If the reader would like to skip on to more toast-centric content, then please click here.

Answering questions about the erosion of trust in politicians and the media is beyond the scope of this humble blog. Wondering what has happened to trust in science is firmly in its crosshairs. One part of the answer is that – for some time – scientists were held in too much esteem and the pendulum was inevitably going to swing back the other way. For a while the pace of scientific progress and the miracles of technology which this unleashed placed science on a pedestal from which there was only one direction of travel. During this period in which science was – in general – uncritically held in great regard, the messy reality of actual science was never really highlighted. The very phrase “scientific facts” is actually something of an oxymoron. What we have is instead scientific theories. Useful theories are consistent with existing observations and predict new phenomena. However – as I explained in Patterns patterns everywhere – a theory is only as good as the latest set of evidence and some cherished scientific theories have been shown to be inaccurate; either in general, or in some specific circumstances [7]. However saying “we have a good model that helps us explain many aspects of a phenomenon and predict more, but it doesn’t cover everything and there are some uncertainties” is a little more of a mouthful than “we have discovered that…”.

There have been some obvious landmarks along the way to science’s current predicament. The unprecedented destruction unleashed by the team working on the Manhattan Project at first made the scientists involved appear God-like. It also seemed to suggest that the path to Great Power status was through growing or acquiring the best Physicists. However, as the prolonged misery caused in Japan by the twin nuclear strikes became more apparent and as the Cold War led to generations living under the threat of mutually assured destruction, the standing attached by the general public to Physicists began to wane; the God-like mantle began to slip. While much of our modern world and its technology was created off the back of now fairly old theories like Quantum Chromodynamics and – most famously – Special and General Relativity, the actual science involved became less and less accessible to the man or woman in the street. For all the (entirely justified) furore about the detection of the Higgs Boson, few people would be able to explain much about what it is and how it fits into the Standard Model of particle physics.

In the area of medicine and pharmacology, the Thalidomide tragedy, where a drug prescribed to help pregnant women suffering from morning sickness instead led to terrible birth defects in more than 10,000 babies, may have led to more stringent clinical trials, but also punctured the air of certainty that had surrounded the development of the latest miracle drug. While medical science and related disciplines have vastly improved the health of much of the globe, the glacial progress in areas such as oncology has served as a reminder of the fallibility of some scientific endeavours. In a small way, the technical achievements of that apogee of engineering, NASA, were undermined by loss of crafts and astronauts. Most notably the Challenger and Columbia fatalities served to further remove the glossy veneer that science had acquired in the 1940s to 1960s.

Lest it be thought at this point that I am decrying science, or even being anti-scientific, nothing could be further from the truth. I firmly believe that the ever growing body of scientific knowledge is one of humankind’s greatest achievements, if not its greatest. From our unpromising vantage point on an unremarkable little planet in our equally common-all-garden galaxy we have been able to grasp many of the essential truths about the whole Universe from the incomprehensibly gigantic to the most infinitesimal constituent of a sub-atomic particle. However, it seems that many people do not fully embrace the grandeur of our achievements, or indeed in many cases the unexpected beauty and harmony that they have revealed [8]. It is to the task of understanding this viewpoint that I am addressing my thoughts.

More recently, the austerity that has enveloped much of the developed world since the 2008 Financial Crisis has had two reinforcing impacts on science in many countries. First funding has often been cut, leading to pressure on research programmes and scientists increasingly having to make an economic case for their activities; a far cry from the 1950s. Second, income has been effectively stagnant for the vast majority of people, this means that scientific expenditure can seem something of a luxury and also fuels the anti-elite feelings cited by The Economist earlier in this article.

Anita Makri

Into this seeming morass steps Anita Makri, “editor/writer/producer and former research scientist”. In a recent Nature article she argues that the form of science communicated in popular media leaves the public vulnerable to false certainty. I reproduce some of her comments here:

“Much of the science that the public knows about and admires imparts a sense of wonder and fun about the world, or answers big existential questions. It’s in the popularization of physics through the television programmes of physicist Brian Cox and in articles about new fossils and quirky animal behaviour on the websites of newspapers. It is sellable and familiar science: rooted in hypothesis testing, experiments and discovery.

Although this science has its place, it leaves the public […] with a different, outdated view to that of scientists of what constitutes science. People expect science to offer authoritative conclusions that correspond to the deterministic model. When there’s incomplete information, imperfect knowledge or changing advice — all part and parcel of science — its authority seems to be undermined. […] A popular conclusion of that shifting scientific ground is that experts don’t know what they’re talking about.”

– Anita Makri, Give the public the tools to trust scientists, Nature, January 2017.

I’ll come back to Anita’s article again later.
 
 
Food Safety – The Dangers Lurking in Toast

Food Safety

After my speculations about the reasons why science is held in less esteem than once was the case, I’ll return to more prosaic matters; namely food and specifically that humble staple of many a breakfast table, toast. Food science has often fared no better than its brother disciplines. The scientific guidance issued to people wanting to eat healthily can sometimes seem to gyrate wildly. For many years fat was the source of all evil, more recently sugar has become public enemy number one. Red wine was meant to have beneficial effects on heart health, then it was meant to be injurious; I’m not quite sure what the current advice consists of. As Makri states above, when advice changes as dramatically as it can do in food science, people must begin to wonder whether the scientists really know anything at all.

So where does toast fit in? Well the governmental body charged with providing advice about food in the UK is called the Food Standards Agency. They describe their job as “using our expertise and influence so that people can trust that the food they buy and eat is safe and honest.” While the FSA do sterling work in areas such as publicly providing ratings of food hygiene for restaurants and the like, their most recent campaign is one which seems at best ill-advised and at worst another nail in the public perception of the reliability of scientific advice. Such things matter because they contribute to the way that people view science in general. If scientific advice about food is seen as unsound, surely there must be questions around scientific advice about climate change, or vaccinations.

Before I am accused of belittling the FSA’s efforts, let’s consider the campaign in question, which is called Go for Gold and encourages people to consume less acrylamide. Here is some of what the FSA has to say about the matter:

“Today, the Food Standards Agency (FSA) is launching a campaign to ‘Go for Gold’, helping people understand how to minimise exposure to a possible carcinogen called acrylamide when cooking at home.

Acrylamide is a chemical that is created when many foods, particularly starchy foods like potatoes and bread, are cooked for long periods at high temperatures, such as when baking, frying, grilling, toasting and roasting. The scientific consensus is that acrylamide has the potential to cause cancer in humans.

[…]

as a general rule of thumb, aim for a golden yellow colour or lighter when frying, baking, toasting or roasting starchy foods like potatoes, root vegetables and bread.”

– Food Standards Agency, Families urged to ‘Go for Gold’ to reduce acrylamide consumption, January 2017.

The Go for Gold campaign was picked up by various media outlets in the UK. For example the BBC posted an article on its web-site which opened by saying:

Dangerous Toast [borrowed from the BBC]

“Bread, chips and potatoes should be cooked to a golden yellow colour, rather than brown, to reduce our intake of a chemical which could cause cancer, government food scientists are warning.”

– BBC, Browned toast and potatoes are ‘potential cancer risk’, say food scientists, January 2017.

The BBC has been obsessed with neutrality on all subjects recently [9], but in this case they did insert the reasonable counterpoint that:

“However, Cancer Research UK [10] said the link was not proven in humans.”

Acrylamide is certainly a nasty chemical. Amongst other things, it is used in polyacrylamide gel electrophoresis, a technique used in biochemistry. If biochemists mix and pour their own gels, they have to monitor their exposure and there are time-based and lifetime limits as to how often they can do such procedures [11]. Acrylamide has also been shown to lead to cancer in mice. So what could be more reasonable that the FSA’s advice?
 
 
Food Safety – A Statistical / Risk Based Approach

David Spiegelhalter

Earlier I introduced Anita Makri, it is time to meet our second protagonist, David Spiegelhalter, Winton Professor for the Public Understanding of Risk in the Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge [12]. Professor Spiegelhalter has penned a response to the FSA’s Go for Gold campaign. I feel that this merits reading in entirety, but here are some highlights:

“Very high doses [of Acrylamide] have been shown to increase the risk of mice getting cancer. The IARC (International Agency for Research on Cancer) considers it a ‘probable human carcinogen’, putting it in the same category as many chemicals, red meat, being a hairdresser and shift-work.

However, there is no good evidence of harm from humans consuming acrylamide in their diet: Cancer Research UK say that ‘At the moment, there is no strong evidence linking acrylamide and cancer.’

This is not for want of trying. A massive report from the European Food Standards Agency (EFSA) lists 16 studies and 36 publications, but concludes

  ‘In the epidemiological studies available to date, AA intake was not associated with an increased risk of most common cancers, including those of the GI or respiratory tract, breast, prostate and bladder. A few studies suggested an increased risk for renal cell, and endometrial (in particular in never-smokers) and ovarian cancer, but the evidence is limited and inconsistent. Moreover, one study suggested a lower survival in non-smoking women with breast cancer with a high pre-diagnostic exposure to AA but more studies are necessary to confirm this result. (p185)’

[…]

[Based on the EFSA study] adults with the highest consumption of acrylamide could consume 160 times as much and still only be at a level that toxicologists think unlikely to cause increased tumours in mice.

[…]

This all seems rather reassuring, and may explain why it’s been so difficult to observe any effect of acrylamide in diet.”

– David Spiegelhalter, Opinion: How dangerous is burnt toast?, University of Cambridge, January 2017.

Indeed, Professor Spiegelhalter, an esteemed statistician, also points out that most studies will adopt the standard criteria for statistical significance. Given that such significance levels are often set at 5%, then this means that:

“[As] each study is testing an association with a long list of cancers […], we would expect 1 in 20 of these associations to be positive by chance alone.”

He closes his article by stating – not unreasonably – that the FSA’s time and attention might be better spent on areas where causality between an agent and morbidity is well-established, for example obesity. My assumption is that the FSA has a limited budget and has to pick and choose what food issues to weigh in on. Even if we accept for the moment that there is some slight chance of a causal link between the consumption of low levels of acrylamide and cancer, there are plenty of other areas in which causality is firmly established; obesity as mentioned by Professor Spiegelhalter, excessive use of alcohol, even basic kitchen hygiene. It is hard to understand why the FSA did not put more effort into these and instead focussed on an area where the balance of scientific judgement is that there is unlikely to be an issue.

Having a mathematical background perhaps biases me, but I tend to side with Professor Spiegelhalter’s point of view. I don’t want to lay the entire blame for the poor view that some people have of science at the FSA’s door, but I don’t think campaigns like Go for Gold help very much either. The apocryphal rational man or woman will probably deduce that there is not an epidemic of acrylamide poisoning in progress. This means that they may question what the experts at the FSA are going on about. In turn this reduces respect for other – perhaps more urgent – warnings about food and drink. Such a reaction is also likely to colour how the same rational person thinks about “expert” advice in general. All of this can contribute to further cracks appearing in the public edifice of science, an outcome I find very unfortunate.

So what is to be done?
 
 
A Call for a New and More Honest Approach to Science Communications

Honesty is the Best Policy

As promised I’ll return to Anita Makri’s thoughts in the same article referenced above:

“It’s more difficult to talk about science that’s inconclusive, ambivalent, incremental and even political — it requires a shift in thinking and it does carry risks. If not communicated carefully, the idea that scientists sometimes ‘don’t know’ can open the door to those who want to contest evidence.

[…]

Scientists can influence what’s being presented by articulating how this kind of science works when they talk to journalists, or when they advise on policy and communication projects. It’s difficult to do, because it challenges the position of science as a singular guide to decision making, and because it involves owning up to not having all of the answers all the time while still maintaining a sense of authority. But done carefully, transparency will help more than harm. It will aid the restoration of trust, and clarify the role of science as a guide.”

The scientific method is meant to be about honesty. You record what you see, not what you want to see. If the data don’t support your hypothesis, you discard or amend your hypothesis. The peer-review process is meant to hold scientists to the highest levels of integrity. What Makri seems to be suggesting is for scientists to turn their lenses on themselves and how they communicate their work. Being honest where there is doubt may be scary, but not as scary as being caught out pushing certainty where no certainty is currently to be had.
 


 
Epilogue

At the beginning of this article, I promised that I would bring things back to a business context. With lots of people with PhDs in numerate sciences now plying their trade as data scientists and the like, there is an attempt to make commerce more scientific [13]. Understandably, the average member of a company will have less of an appreciation of statistics and statistical methods than their data scientists do. This can lead to data science seeming like magic; the philosopher’s stone [14]. There are obvious parallels here with how Physicists were seen in the period immediately after the Second World War.

Earlier in the text, I mused about what factors may have led to a deterioration in how the public views science and scientists. I think that there is much to be learnt from the issues I have covered in this article. If data scientists begin to try to peddle absolute truth and perfect insight (both of which, it is fair to add, are often expected from them by non-experts), as opposed to ranges of outcomes and probabilities, then the same decline in reputation probably awaits them. Instead it would be better if data scientists heeded Anita Makri’s words and tried to always be honest about what they don’t know as well as what they do.
 


 
Notes

 
[1]
 
Save to note that there really is no argument in scientific circles.

As ever Randall Munroe makes the point pithily in his Earth Temperature Timeline – https://xkcd.com/1732/.

For a primer on the area, you could do worse than watching The Royal Society‘s video:

 
[2]
 
For the record, my daughter has had every vaccine known to the UK and US health systems and I’ve had a bunch of them recently as well.
 
[3]
 
Most scientists I know would be astonished that they are considered part of the amorphous, ill-defined and obviously malevolent global “elite”. Then “elite” is just one more proxy for “the other” something which it is not popular to be in various places in the world at present.
 
[4]
 
Or what passed for debate in these post-truth times.
 
[5]
 
Mr Gove studied English at Lady Margaret Hall, Oxford, where he was also President of the Oxford Union. Clearly Oxford produces less experts than it used to in previous eras.
 
[6]
 
One that is also probably wildly inaccurate and certainly incomplete.
 
[7]
 
So Newton’s celebrated theory of gravitation is “wrong” but actually works perfectly well in most circumstances. The the Rutherford–Bohr model, where atoms are little Solar Systems, with the nucleus circled by electrons much as the planets circle the Sun is “wrong”, but actually does serve to explain a number of things; if sadly not the orbital angular momentum of electrons.
 
[8]
 
Someone should really write a book about that – watch this space!
 
[9]
 
Not least in the aforementioned EU Referendum where it felt the need to follow the views of the vast majority of economists with those of the tiny minority, implying that the same weight be attached to both points of view. For example, 99.9999% of people believe the world to be round, but in the interests of balance my mate Jim reckons it is flat.
 
[10]
 
According to their web-site: “the world’s leading charity dedicated to beating cancer through research”.
 
[11]
 
As attested to personally by the only proper scientist in our family.
 
[12]
 
Unlike Oxford (according to Mr Gove anyway), Cambridge clearly still aspires to creating experts.
 
[13]
 
By this I mean proper science and not pseudo-science like management theory and the like.
 
[14]
 
In the original, non-J.K. Rowling sense of the phrase.