More Statistics and Medicine

Weighing Medicine in the balance

I wrote last on the intersection of these two disciplines back in March 2011 (Medical Malpractice). What has prompted me to return to the subject is some medical tests that I was offered recently. If the reader will forgive me, I won’t go into the medical details – and indeed have also obfuscated some of the figures I was quoted – but neither are that relevant to the point that I wanted to make. This point relates to how statistics are sometimes presented in medical situations and – more pertinently – the disconnect between how these may be interpreted by the man or woman in the street, as opposed to what is actually going on.

Rather than tie myself in knots, let’s assume that the test is for a horrible disease called PJT Syndrome [1]. Let’s further assume that I am told that the test on offered has an accuracy of 80% [2]. This in and of itself is a potentially confusing figure. Does the test fail to detect the presence of PJT Syndrome 20% of the time, or does it instead erroneously detect PJT Syndrome, when the patient is actually perfectly healthy, 20% of the time? In this case, after an enquiry, I was told that a negative result was a negative result, but that a positive one did not always mean that the subject suffered from PJT Syndrome; so the issue is confined to false positives, not false negatives. This definition of 80% accuracy is at least a little clearer.

So want is a reasonable person to deduce from the 80% figure? Probably that if they test positive, that there is an 80% certainty that they have PJT Syndrome. I think that my visceral reaction would probably be along those lines. However, such a conclusion can be incorrect, particularly where the incidence of PJT Syndrome is low in a population. I’ll try to explain why.

If we know that PJT Syndrome occurs in 1 in every 100 people on average, what does this mean for the relevance of our test results? Let’s take a graphical look at a wholly representative population of exactly 100 people. The PJT Syndrome sufferer appears in red at the bottom right.

1 in 100

Now what is the result of the 80% accuracy of our test, remembering that this means that 20% of people taking it will be falsely diagnosed as having PJT Syndrome? Well 20% of 100 is – applying a complex algorithm – approximately 20 people. Let’s flag these up on our population schematic in grey.

20 in 100

So 20 people have the wrong diagnosis. One is correctly identified as having PJT Syndrome and 79 are correctly identified as not having PJT Syndrome; so a total of 80 have the right diagnosis.

What does this mean for those 21 people who have been unfortunate enough to test positive for PJT Syndrome (the one person coloured red and the 20 coloured grey)? Well only one of them actually has the malady. So, if I test positive, my chances of actually having PJT Syndrome are not 80% as we originally thought, but instead 1 in 21 or 4.76%. So my risk is still low having tested positive. It is higher than the risk in the general population, which is 1 in 100, or 1%, but not much more so.

The problem arises if having a condition is rare (here 1 in 100) and the accuracy of a test is low (here it is wrong for 20% of people taking it). If you consider that the condition that I was being offered a test for actually has an incidence of around 1 in 20,000 people, then with an 80% accurate test we would get the following:

  1. In a population of 20,000 one 1 person has the condition
  2. In the same population a test with our 80% accuracy means that 20% of people will test positive for it when they are perfectly healthy, this amounts to 4,000 people
  3. So in total, 4,001 people will test positive, 1 correctly, 4,000 erroneously
  4. Which means that a positive test tells me my odds of having the condition being tested for are 1 in 4,001, or 0.025%; still a pretty unlikely event

Low accuracy tests and rare conditions are a very bad combination. As well as causing people unnecessary distress, the real problem is where the diagnosis leads potential suffers to take actions (e.g. undergoing further diagnosis, which could be invasive, or even embarking on a course of treatment) which may themselves have the potential to cause injury to the patient.

I am not of course suggesting that people ignore medical advice, but Doctors are experts in medicine and not statistics. When deciding what course of action to take in a situation similar to one I recently experienced, taking the time to more accurately assess risks and benefits is extremely important. Humans are well known to overestimate some risks (and underestimate others), there are circumstances when crunching the numbers and seeing what they tell you is not only a good idea, it can help to safeguard your health.

For what it’s worth, I opted out of these particular tests.
 


 
Notes

 
[1]
 
A terrible condition which renders sufferers unable to express any thought in under 1,000 words.
 
[2]
 
Not the actual figure quoted, but close to it.

 

 

Curiouser and Curiouser – The Limits of Brexit Voting Analysis

An original illustration from Charles Lutwidge Dodgson's seminal work would have been better, but sadly none such seems to be extant
 
Down the Rabbit-hole

When I posted my Brexit infographic reflecting the age of voters an obvious extension was to add an indication of the number of people in each age bracket who did not vote as well as those who did. This seemed a relatively straightforward task, but actually proved to be rather troublesome (this may be an example of British understatement). Maybe the caution I gave about statistical methods having a large impact on statistical outcomes in An Inconvenient Truth should have led me to expect such issues. In any case, I thought that it would be instructive to talk about the problems I stumbled across and to – once again – emphasise the perils of over-extending statistical models.

Brexit ages infographic
Click to download a larger PDF version in a new window.

Regular readers will recall that my Brexit Infographic (reproduced above) leveraged data from an earlier article, A Tale of two [Brexit] Data Visualisations. As cited in this article, the numbers used were from two sources:

  1. The UK Electoral Commission – I got the overall voting numbers from here.
  2. Lord Ashcroft’s Poling organisation – I got the estimated distribution of votes by age group from here.

In the notes section of A Tale of two [Brexit] Data Visualisations I [prophetically] stated that the breakdown of voting by age group was just an estimate. Based on what I have discovered since, I’m rather glad that I made this caveat explicit.
 
 
The Pool of Tears

In order to work out the number of people in each age bracket who did not vote, an obvious starting point would be the overall electorate, which the UK Electoral Commission stated as being 46,500,001. As we know that 33,551,983 people voted (an actual figure rather than an estimate), then this is where the turnout percentage of 72.2% (actually 72.1548%) came from (33,551,983 / 45,500,001).

A clarifying note, the electorate figures above refer to people who are eligible to vote. Specifically, in order to vote in the UK Referendum, people had to meet the following eligibility criteria (again drawn from the UK Electoral Commission):

To be eligible to vote in the EU Referendum, you must be:

  • A British or Irish citizen living in the UK, or
  • A Commonwealth citizen living in the UK who has leave to remain in the UK or who does not require leave to remain in the UK, or
  • A British citizen living overseas who has been registered to vote in the UK in the last 15 years, or
  • An Irish citizen living overseas who was born in Northern Ireland and who has been registered to vote in Northern Ireland in the last 15 years.

EU citizens are not eligible to vote in the EU Referendum unless they also meet the eligibility criteria above.

So far, so simple. The next thing I needed to know was how the electorate was split by age. This is where we begin to run into problems. One place to start is the actual population of the UK as at the last census (2011). This is as follows:
 

Ages (years) Population % of total
0–4 3,914,000 6.2
5–9 3,517,000 5.6
10–14 3,670,000 5.8
15–19 3,997,000 6.3
20–24 4,297,000 6.8
25–29 4,307,000 6.8
30–34 4,126,000 6.5
35–39 4,194,000 6.6
40–44 4,626,000 7.3
45–49 4,643,000 7.3
50–54 4,095,000 6.5
55–59 3,614,000 5.7
60–64 3,807,000 6.0
65–69 3,017,000 4.8
70–74 2,463,000 3.9
75–79 2,006,000 3.2
80–84 1,496,000 2.4
85–89 918,000 1.5
90+ 476,000 0.8
Total 63,183,000 100.0

 
If I roll up the above figures to create the same age groups as in the Ashcroft analysis (something that requires splitting the 15-19 range, which I have assumed can be done uniformly), I get:
 

Ages (years) Population % of total
0-17 13,499,200 21.4
18-24 5,895,800 9.3
25-34 8,433,000 13.3
35-44 8,820,000 14.0
45-54 8,738,000 13.8
55-64 7,421,000 11.7
65+ 10,376,000 16.4
Total 63,183,000 100.0

 
The UK Government isn’t interested in the views of people under 18[citation needed], so eliminating this row we get:
 

Ages (years) Population % of total
18-24 5,895,800 11.9
25-34 8,433,000 17.0
35-44 8,820,000 17.8
45-54 8,738,000 17.6
55-64 7,421,000 14.9
65+ 10,376,000 20.9
Total 49,683,800 100.0

 
As mentioned, the above figures are from 2011 and the UK population has grown since then. Web-site WorldOMeters offers an extrapolated population of 65,124,383 for the UK in 2016 (this is as at 12th July 2016; if extrapolation and estimates make you queasy, I’d suggest closing this article now!). I’m going to use a rounder figure of 65,125,000 people; there is no point pretending that precision exists where it clearly doesn’t. Making the assumption that such growth is uniform across all age groups (please refer to my previous bracketed comment!), then the above exhibit can also be extrapolated to give us:
 

Ages (years) Population % of total
18-24 6,077,014 11.9
25-34 8,692,198 17.0
35-44 9,091,093 17.8
45-54 9,006,572 17.6
55-64 7,649,093 14.9
65+ 10,694,918 20.9
Total 51,210,887 100.0

 
 
Looking Glass House

So our – somewhat fabricated – figure for the 18+ UK population in 2016 is 51,210,887, let’s just call this 51,200,000. As at the beginning of this article the electorate for the 2016 UK Referendum was 45,500,000 (dropping off the 1 person with apologies to him or her). The difference is explicable based on the eligibility criteria quoted above. I now have a rough age group break down of the 51.2 million population, how best to apply this to the 45.5 million electorate?

I’ll park this question for the moment and instead look to calculate a different figure. Based on the Ashcroft model, what percentage of the UK population (i.e. the 51.2 million) voted in each age group? We can work this one out without many complications as follows:
 

Ages (years)
 
Population
(A)
Voted
(B)
Turnout %
(B/A)
18-24 6,077,014 1,701,067 28.0
25-34 8,692,198 4,319,136 49.7
35-44 9,091,093 5,656,658 62.2
45-54 9,006,572 6,535,678 72.6
55-64 7,649,093 7,251,916 94.8
65+ 10,694,918 8,087,528 75.6
Total 51,210,887 33,551,983 65.5

(B) = Size of each age group in the Ashcroft sample as a percentage multiplied by the total number of people voting (see A Tale of two [Brexit] Data Visualisations).
 
Remember here that actual turnout figures have electorate as the denominator, not population. As the electorate is less than the population, this means that all of the turnout percentages should actually be higher than the ones calculated (e.g. the overall turnout with respect to electorate is 72.2% whereas my calculated turnout with respect to population is 65.5%). So given this, how to explain the 94.8% turnout of 55-64 year olds? To be sure this group does reliably turn out to vote, but did essentially all of them (remembering that the figures in the above table are too low) really vote in the referendum? This seems less than credible.

The turnout for 55-64 year olds in the 2015 General Election has been estimated at 77%, based on an overall turnout of 66.1% (web-site UK Political Info; once more these figures will have been created based on techniques similar to the ones I am using here). If we assume a uniform uplift across age ranges (that “assume” word again!) then one might deduce that an increase in overall turnout from 66.1% to 72.2%, might lead to the turnout in the 55-64 age bracket increasing from 77% to 84%. 84% turnout is still very high, but it is at least feasible; close to 100% turnout in from this age group seems beyond the realms of likelihood.

So what has gone wrong? Well so far the only culprit I can think of is the distribution of voting by age group in the Ashcroft poll. To be clear here, I’m not accusing Lord Ashcroft and his team of sloppy work. Instead I’m calling out that the way that I have extrapolated their figures may not be sustainable. Indeed, if my extrapolation is valid, this would imply that the Ashcroft model over estimated the proportion of 55-64 year olds voting. Thus it must have underestimated the proportion of voters in some other age group. Putting aside the likely fact that I have probably used their figures in an unintended manner, could it be that the much-maligned turnout of younger people has been misrepresented?

To test the validity of this hypothesis, I turned to a later poll by Omnium. To be sure this was based on a sample size of around 2,000 as opposed to Ashcroft’s 12,000, but it does paint a significantly different picture. Their distribution of voter turnout by age group was as follows:
 

Ages (years) Turnout %
18-24 64
25-39 65
40-54 66
55-64 74
65+ 90

 
I have to say that the Omnium age groups are a bit idiosyncratic, so I have taken advantage of the fact that the figures for 25-54 are essentially the same to create a schedule that matches the Ashcroft groups as follows:
 

Ages (years) Turnout %
18-24 64
25-34 65
35-44 65
45-54 65
55-64 74
65+ 90

 
The Omnium model suggests that younger voters may have turned out in greater numbers than might be thought based on the Ashcroft data. In turn this would suggest that a much greater percentage of 18-24 year olds turned out for the Referendum (64%) than for the last General Election (43%); contrast this with an estimated 18-24 turnout figure of 47% based on the just increase in turnout between the General Election and the Referendum. The Omnium estimates do still however recognise that turnout was still greater in the 55+ brackets, which supports the pattern seen in other elections.
 
 
Humpty Dumpty

While it may well be that the Leave / Remain splits based on the Ashcroft figures are reasonable, I’m less convinced that extrapolating these same figures to make claims about actual voting numbers by age group (as I have done) is tenable. Perhaps it would be better to view each age cohort as a mini sample to be treated independently. Based on the analysis above, I doubt that the turnout figures I have extrapolated from the Ashcroft breakdown by age group are robust. However, that is not the same as saying that the Ashcroft data is flawed, or that the Omnium figures are correct. Indeed the Omnium data (at least those elements published on their web-site) don’t include an analysis of whether the people in their sample voted Leave or Remain, so direct comparison is not going to be possible. Performing calculation gymnastics such as using the Omnium turnout for each age group in combination with the Ashcroft voting splits for Leave and Remain for the same age groups actually leads to a rather different Referendum result, so I’m not going to plunge further down this particular rabbit hole.

In summary, my supposedly simple trip to the destitution of an enhanced Brexit Infographic has proved unexpectedly arduous, winding and beset by troubles. These challenges have proved so great that I’ve abandoned the journey and will be instead heading for home.
 
 
Which dreamed it?

Based on my work so far, I have severe doubts about the accuracy of some of the age-based exhibits I have published (versions of which have also appeared on many web-sites, the BBC to offer just one example, scroll down to “How different age groups voted” and note that the percentages cited reconcile to mine). I believe that my logic and calculations are sound, but it seems that I am making too many assumptions about how I can leverage the Ashcroft data. After posting this article, I will accordingly go back and annotate each of my previous posts and link them to these later findings.

I think the broader lesson to be learnt is that estimates are just that, attempts (normally well-intentioned of course) to come up with figures where the actual numbers are not accessible. Sometimes this is a very useful – indeed indispensable – approach, sometimes it is less helpful. In either case estimation should always be approached with caution and the findings ideally sense-checked in the way that I have tried to do above.

Occam’s razor would suggest that when the stats tell you something that seems incredible, then 99 times out of 100 there is an error or inaccurate assumption buried somewhere in the model. This applies when you are creating the model yourself and doubly so where you are relying upon figures calculated by other people. In the latter case not only is there the risk of their figures being inaccurate, there is the incremental risk that you interpret them wrongly, or stretch their broader application to breaking point. I was probably guilty of one or more of the above sins in my earlier articles. I’d like my probable misstep to serve as a warning to other people when they too look to leverage statistics in new ways.

A further point is the most advanced concepts I have applied in my calculations above are addition, subtraction, multiplication and division. If these basic operations – even in the hands of someone like me who is relatively familiar with them – can lead to the issues described above, just imagine what could result from the more complex mathematical techniques (e.g. ambition, distraction, uglification and derision) used by even entry-level data scientists. This perhaps suggests an apt aphorism: Caveat calculator!

Beware the Jabberwock, my son! // The jaws that bite, the claws that catch! // Beware the Jubjub bird, and shun // The frumious Bandersnatch!

 

How Age was a Critical Factor in Brexit

Brexit ages infographic
Click to download a larger PDF version in a new window.

In my last article, I looked at a couple of ways to visualise the outcome of the recent UK Referendum on Europen Union membership. There I was looking at how different visual representations highlight different attributes of data.

I’ve had a lot of positive feedback about my previous Brexit exhibits and I thought that I’d capture the zeitgeist by offering a further visual perspective, perhaps one more youthful than the venerable pie chart; namely an infographic. My attempt to produce one of these appears above and a full-size PDF version is also just a click away.

For caveats on the provenance of the data, please also see the previous article’s notes section.
 

Addendum

I have leveraged age group distributions from the Ascroft Polling organisation to create this exhibits. Other sites – notably the BBC – have done the same and my figures reconcile to the interpretations in other places. However, based on further analysis, I have some reason to think that either there are issues with the Ashcroft data, or that I have leveraged it in ways that the people who compiled it did not intend. Either way, the Ashcroft numbers lead to the conclusion that close to 100% of 55-64 year olds voted in the UK Referendum, which seems very, very unlikely. I have contacted the Ashcroft Polling organisation about this and will post any reply that I receive.

– Peter James Thomas, 14th July 2016

 

A Tale of Two [Brexit] Data Visualisations

Rip, or is that RIP? With apologies to The Economist and acknowledgement to David Bacon.

I’m continuing with the politics and data visualisation theme established in my last post. However, I’ll state up front that this is not a political article. I have assiduously stayed silent [on this blog at least] on the topic of my country’s future direction, both in the lead up to the 23rd June poll and in its aftermath. Instead, I’m going to restrict myself to making a point about data visualisation; both how it can inform and how it can mislead.

Brexit Bar
UK Referendum on EU Membership – Percentage voting by age bracket (see notes)

The exhibit above is my version of one that has appeared in various publications post referendum, both on-line and print. As is referenced, its two primary sources are the UK Electoral Commission and Lord Ashcroft’s polling organisation. The reason why there are two sources rather than one is explained in the notes section below.

With the caveats explained below, the above chart shows the generational divide apparent in the UK Referendum results. Those under 35 years old voted heavily for the UK to remain in the EU; those with ages between 35 and 44 voted to stay in pretty much exactly the proportion that the country as a whole voted to leave; and those over 45 years old voted increasingly heavily to leave as their years advanced.

One thing which is helpful about this exhibit is that it shows in what proportion each cohort voted. This means that the type of inferences I made in the previous paragraph leap off the page. It is pretty clear (visually) that there is a massive difference between how those aged 18-24 and those aged 65+ thought about the question in front of them in the polling booth. However, while the percentage based approach illuminates some things, it masks others. A cursory examination of the chart above might lead one to ask – based on the area covered by red rectangles – how it was that the Leave camp prevailed? To pursue an answer to this question, let’s consider the data with a slightly tweaked version of the same visualisation as below:

Brexit Bar 2
UK Referendum on EU Membership – Numbers voting by age bracket (see notes)

[Aside: The eagle-eyed amongst you may notice a discrepancy between the figures shown on the total bars above and the actual votes cast, which were respectively: Remain: 16,141k and Leave: 17,411k. Again see the notes section for an explanation of this.]

A shift from percentages to actual votes recorded casts some light on the overall picture. It now becomes clear that, while a large majority of 18-24 year olds voted to Remain, not many people in this category actually voted. Indeed while, according to the 2011 UK Census, the 18-24 year category makes up just under 12% of all people over 18 years old (not all of whom would necessarily be either eligible or registered to vote) the Ashcroft figures suggest that well under half of this group cast their ballot, compared to much higher turnouts for older voters (once more see the notes section for caveats).

This observation rather blunts the assertion that the old voted in ways that potentially disadvantaged the young; the young had every opportunity to make their voice heard more clearly, but didn’t take it. Reasons for this youthful disengagement from the political process are of course beyond the scope of this article.

However it is still hard (at least for the author’s eyes) to get the full picture from the second chart. In order to get a more visceral feeling for the dynamics of the vote, I have turned to the much maligned pie chart. I also chose to use the even less loved “exploded” version of this.

Brexit Flag
UK Referendum on EU Membership – Number voting by age bracket (see notes)

Here the weight of both the 65+ and 55+ Leave vote stands out as does the paucity of the overall 18-24 contribution; the only two pie slices too small to accommodate an internal data label. This exhibit immediately shows where the referendum was won and lost in a way that is not as easy to glean from a bar chart.

While I selected an exploded pie chart primarily for reasons of clarity, perhaps the fact that the resulting final exhibit brings to mind a shattered and reassembled Union Flag was also an artistic choice. Unfortunately, it seems that this resemblance has a high likelihood of proving all too prophetic in the coming months and years.
 

Addendum

I have leveraged age group distributions from the Ascroft Polling organisation to create these exhibits. Other sites – notably the BBC – have done the same and my figures reconcile to the interpretations in other places. However, based on further analysis, I have some reason to think that either there are issues with the Ashcroft data, or that I have leveraged it in ways that the people who compiled it did not intend. Either way, the Ashcroft numbers lead to the conclusion that close to 100% of 55-64 year olds voted in the UK Referendum, which seems very, very unlikely. I have contacted the Ashcroft Polling organisation about this and will post any reply that I receive.

– Peter James Thomas, 14th July 2016

 



 
 
Notes

Caveat: I am neither a professional political pollster, nor a statistician. Instead I’m a Pure Mathematician, with a basic understanding of some elements of both these areas. For this reason, the following commentary may not be 100% rigorous; however my hope is that it is nevertheless informative.

In the wake of the UK Referendum on EU membership, a lot of attempts were made to explain the result. Several of these used splits of the vote by demographic attributes to buttress the arguments that they were making. All of the exhibits in this article use age bands, one type of demographic indicator. Analyses posted elsewhere looked at things like the influence of the UK’s social grade classifications (A, B, C1 etc.) on voting patterns, the number of immigrants in a given part of the country, the relative prosperity of different areas and how this has changed over time. Other typical demographic dimensions might include gender, educational achievement or ethnicity.

However, no demographic information was captured as part of the UK referendum process. There is no central system which takes a unique voting ID and allocates attributes to it, allowing demographic dicing and slicing (to be sure a partial and optional version of this is carried out when people leave polling stations after a General Election, but this was not done during the recent referendum).

So, how do so many demographic analyses suddenly appear? To offer some sort of answer here, I’ll take you through how I built the data set behind the exhibits in this article. At the beginning I mentioned that I relied on two data sources, the actual election results published by the UK Electoral Commission and the results of polling carried out by Lord Ashcroft’s organisation. The latter covered interviews with 12,369 people selected to match what was anticipated to be the demographic characteristics of the actual people voting. As with most statistical work, properly selecting a sample with no inherent biases (e.g. one with the same proportion of people who are 65 years or older as in the wider electorate) is generally the key to accuracy of outcome.

Importantly demographic information is known about the sample (which may also be reweighted based on interview feedback) and it is by assuming that what holds true for the sample also holds true for the electorate that my charts are created. So if X% of 18-24 year olds in the sample voted Remain, the assumption is that X% of the total number of 18-24 year olds that voted will have done the same.

12,000 plus is a good sample size for this type of exercise and I have no reason to believe that Lord Ashcroft’s people were anything other than professional in selecting the sample members and adjusting their models accordingly. However this is not the same as having definitive information about everyone who voted. So every exhibit you see relating to the age of referendum voters, or their gender, or social classification is based on estimates. This is a fact that seldom seems to be emphasised by news organisations.

The size of Lord Ashchoft’s sample also explains why the total figures for Leave and Remain on my second exhibit are different to the voting numbers. This is because 5,949 / 12,369 = 48.096% (looking at the sample figures for Remain) whereas 16,141,241 / 33,551,983 = 48.108% (looking at the actual voting figures for Remain). Both figures round to 48.1%, but the small difference in the decimal expansions, when applied to 33 million people, yields a slightly different result.

 

Showing uncertainty in a Data Visualisation

Click to view a larger version

My attention was drawn to the above exhibit by a colleague. It is from the FiveThirtyEight web-site and one of several exhibits included in an analysis of the standing of the two US Presidential hopefuls.

In my earlier piece, Data Visualisation – A Scientific Treatment, I argued for more transparency in showing the inherent variability associated with the numbers spat out by statistical models. My specific call back then was for the use of error bars.

The FiveThirtyEight exhibit deals with this same challenge in a manner which I find elegant, clean and eminently digestible. It contains many different elements of information, but remains an exhibit whose meaning is easy to absorb. It’s an approach I will probably look to leverage myself next time I have a similar need.

 

Themes from a Chief Data Officer Forum – the 180 day perspective

Tempus fugit

The author would like to acknowledge the input and assistance of his fellow delegates, both initially at the IRM(UK) CDO Executive Forum itself and later in reviewing earlier drafts of this article. As ever, responsibility for any errors or omissions remains mine alone.
 
 
Introduction

Time flies as Virgil observed some 2,045 years ago. A rather shorter six months back I attended the inaugural IRM(UK) Chief Data Officer Executive Forum and recently I returned for the second of what looks like becoming biannual meetings. Last time the umbrella event was the IRM(UK) Enterprise Data and Business Intelligence Conference 2015 [1], this session was part of the companion conference: IRM(UK) Master Data Management Summit / and Data Governance Conference 2016.

This article looks to highlight some of the areas that were covered in the forum, but does not attempt to be exhaustive, instead offering an impressionistic view of the meeting. One reason for this (as well as the author’s temperament) is that – as previously – in order to allow free exchange of ideas, the details of the meeting are intended to stay within the confines of the room.

Last November, ten themes emerged from the discussions and I attempted to capture these over two articles. The headlines appear in the box below:

Themes from the previous Forum:
  1. Chief Data Officer is a full-time job
  2. The CDO most logically reports into a commercial area (CEO or COO)
  3. The span of CDO responsibilities is still evolving
  4. Data Management is an indispensable foundation for Analytics, Visualisation and Statistical Modelling
  5. The CDO is in the business of driving cultural change, not delivering shiny toys
  6. While some CDO roles have their genesis in risk mitigation, most are focussed on growth
  7. New paradigms are data / analytics-centric not application-centric
  8. Data and Information need to be managed together
  9. Data Science is not enough
  10. Information is often a missing link between Business and IT strategies

One area of interest for me was how things had moved on in the intervening months and I’ll look to comment on this later.

By way of background, some of the attendees were shared with the November 2015 meeting, but there was also a smattering of new faces, including the moderator, Peter Campbell, President of DAMA’s Belgium and Luxembourg chapter. Sectors represented included: Distribution, Extractives, Financial Services, and Governmental.

The discussions were wide ranging and perhaps less structured than in November’s meeting, maybe a facet of the familiarity established between some delegates at the previous session. However, there were four broad topics which the attendees spent time on: Management of Change (Theme 5); Data Privacy / Trust; Innovation; and Value / Business Outcomes.

While clearly the second item on this list has its genesis in the European Commission’s recently adopted General Data Protection Regulation (GDPR [2]), it is interesting to note that the other topics suggest that some elements of the CDO agenda appear to have shifted in the last six months. At the time of the last meeting, much of what the group talked about was foundational or even theoretical. This time round there was both more of a practical slant to the conversation, “how do we get things done?” and a focus on the future, “how do we innovate in this space?”

Perhaps this also reflects that while CDO 1.0s focussed on remedying issues with data landscapes and thus had a strong risk mitigation flavour to their work, CDO 2.0s are starting to look more at value-add and delivering insight (Theme 6). Of course some organisations are yet to embark on any sort of data-related journey (CDO 0.0 maybe), but in the more enlightened ones at least, the CDO’s focus is maybe changing, or has already changed (Theme 3).

Some flavour of the discussions around each of the above topics is provided below, but as mentioned above, these observations are both brief and impressionistic:
 
 
Management of Change

Escher applies to most aspects of human endeavour

The title of Managing Change has been chosen (by the author) to avoid any connotations of Change Management. It was recognised by the group that there are two related issues here. The first is the organisational and behavioural change needed to both ensure that data is fit-for-purpose and that people embrace a more numerical approach to decision-making; perhaps this area is better described as Cultural Transformation. The second is the fact (also alluded to at the previous forum) that Change Programmes tend to have the effect of degrading data assets over time, especially where monetary or time factors lead data-centric aspects of project to be de-scoped.

On Cultural Transformation, amongst a number of issues discussed, the need to answer the question “What’s in it for me?” stood out. This encapsulates the human aspect of driving change, the need to engage with stakeholders [3] (at all levels) and the importance of sound communication of what is being done in the data space and – more importantly – why. These are questions to which an entire sub-section of this blog is devoted.

On the potentially deleterious impact of Change [4] on data landscapes, it was noted that whatever CDOs build, be these technological artefacts or data-centric processes, they must be designed to be resilient in the face of both change and Change.
 
 
Data Privacy / Trust

Data Privacy

As referenced above, the genesis of this topic was GDPR. However, it was interesting that the debate extended from this admittedly important area into more positive territory. This related to the observation that the care with which an organisation treats its customers’ or business partners’ data (and the level of trust which this generates) can potentially become a differentiator or even a source of competitive advantage. It is good to report an essentially regulatory requirement possibly morphing into a more value-added set of activities.
 
 
Innovation

Innovation

It might be expected that discussions around this topic would focus on perennials such as Big Data or Advanced Analytics. Instead the conversation was around other areas, such as distributed / virtualised data and the potential impact of Block Chain technology [5] on Data Management work. Inevitably The Internet of Things [6] also featured, together with the ethical issues that this can raise. Other areas discussed were as diverse as the gamification of Data Governance and Social Physics, so we cast the net widely.
 
 
Value / Business Outcomes

Business Value

Here we have the strongest link back into the original ten themes (specifically Theme 6). Of course the acme of data strategies is of little use if it does not deliver positive business outcomes. In many organisations, focus on just remediating issues with the current data landscape could consume a massive chunk of overall Change / IT expenditure. This is because data issues generally emanate from a wide variety of often linked and frequently long-standing organisational weaknesses. These can be architectural, integrational, procedural, operational or educational in nature. One of the challenges for CDOs everywhere is how to parcel up their work in a way that adds value, gets things done and is accretive to both the overall Business and Data strategies (which are of course intimately linked as per Theme 10). There is also the need to balance foundational work with more tactical efforts; the former is necessary for lasting benefits to be secured, but the latter can showcase the value of Data Management and thus support further focus on the area.
 
 
While the risk aspect of data issues gets a foot in the door of the Executive Suite, it is only by demonstrating commercial awareness and linking Data Management work to increased business value that any CDO is ever going to get traction. (Theme 6).
 


 
The next IRM(UK) CDO Executive Forum will take place on 9th November 2016 in London – if you would like to apply for a place please e-mail jeremy.hall@irmuk.co.uk.
 


 
Notes

 
[1]
 
I’ll be speaking at IRM(UK) ED&BI 2016 in November. Book early to avoid disappointment!
 
[2]
 
Wikipedia offers a digestible summary of the regulation here. Anyone tempted to think this is either a parochial or arcane area is encouraged to calculate what the greater of €20 million and 4% of their organisation’s worldwide turnover might be and then to consider that the scope of the Regulation covers any company (regardless of its domicile) that processes the data of EU residents.
 
[3]
 
I’ve been itching to use this classic example of stakeholder management for some time:

Rupert Edmund Giles - I'll be happy if just one other person gets it.

 
[4]
 
The capital “c” is intentional.
 
[5]
 
Harvard Business Review has an interesting and provocative article on the subject of Block Chain technology.
 
[6]
 
GIYF

 

 

Data Management as part of the Data to Action Journey

Data Information Insight Action (w700)

| Larger Version | Detailed and Annotated Version (as PDF) |

This brief article is actually the summation of considerable thought and reflects many elements that I covered in my last two pieces (5 Themes from a Chief Data Officer Forum and 5 More Themes from a Chief Data Officer Forum), in particular both the triangle I used as my previous Data Management visualisation and Peter Aiken’s original version, which he kindly allowed me to reproduce on this site (see here for more information about Peter).

What I began to think about was that both of these earlier exhibits (and indeed many that I have seen pertaining to Data Management and Data Governance) suggest that the discipline forms a solid foundation upon which other areas are built. While there is a lot of truth in this view, I have come round to thinking that Data Management may alternatively be thought of as actively taking part in a more dynamic process; specifically the same iterative journey from Data to Information to Insight to Action and back to Data again that I have referenced here several times before. I have looked to combine both the static, foundational elements of Data Management and the dynamic, process-centric ones in the diagram presented at the top of this article; a more detailed and annotated version of which is available to download as a PDF via the link above.

I have also introduced the alternative path from Data to Insight; the one that passes through Statistical Analysis. Data Management is equally critical to the success of this type of approach. I believe that the schematic suggests some of the fluidity that is a major part of effective Data Management in my experience. I also hope that the exhibit supports my assertion that Data Management is not an end in itself, but instead needs to be considered in terms of the outputs that it helps to generate. Pristine data is of little use to an organisation if it is not then exploited to form insights and drive actions. As ever, this need to drive action necessitates a focus on cultural transformation, an area that is covered in many other parts of this site.

This diagram also calls to mind the subject of where and how the roles of Chief Analytics Officer and Chief Data Officer intersect and whether indeed these should be separate roles at all. These are questions to which – as promised on several previous occasions – I will return to in future articles. For now, maybe my schematic can give some data and information practitioners a different way to view their craft and the contributions that it can make to organisational success.