Bigger and Better (Data)?

Is bigger really better

I was browsing Data Science Central [1] recently and came across an article by Bill Vorhies, President & Chief Data Scientist of Data-Magnum. The piece was entitled 7 Cases Where Big Data Isn’t Better and is worth a read in full. Here I wanted to pick up on just a couple of Bill’s points.

In his preamble, he states:

Following the literature and the technology you would think there is universal agreement that more data means better models. […] However […] it’s always a good idea to step back and examine the premise. Is it universally true that our models will be more accurate if we use more data? As a data scientist you will want to question this assumption and not automatically reach for that brand new high-performance in-memory modeling array before examining some of these issues.

Bill goes on to make several pertinent points including: that if your data is bad, having more of it is not necessarily a solution; that attempting to create a gigantic and all-purpose model may well be inferior to multiple, more targeted models on smaller sub-sets of data; and that there exist specific instances where a smaller data sets yields greater accuracy [2]. However I wanted to pick up directly on Bill’s point 6 of 7, in which he also references Larry Greenemeier (@lggreenemeier) of Scientific American.

  Bill Vorhies   Larry Greenemeier  

6. Sometimes We Get Hypnotized By the Overwhelming Volume of the Data and Forget About Data Provenance and Good Project Design

A few months back I reviewed an article by Larry Greenemeier [3] about the failure of Google Flu Trend analysis to predict the timing and severity of flu outbreaks based on social media scraping. It was widely believed that this Big Data volume of data would accurately predict the incidence of flu but the study failed miserably missing timing and severity by a wide margin.

Says Greenemeier, “Big data hubris is the often the implicit assumption that big data are a substitute for, rather than a supplement to, traditional data collection and analysis. The mistake of many big data projects, the researchers note, is that they are not based on technology designed to produce valid and reliable data amenable for scientific analysis. The data comes from sources such as smartphones, search results and social networks rather than carefully vetted participants and scientific instruments”.

Perhaps more pertinent to a business environment, Greenemeier’s article also states:

Context is often lacking when info is pulled from disparate sources, leading to questionable conclusions.

Ruler

Neither of these authors is saying that having greater volumes of data is a definitively bad thing; indeed Vorhies states:

In general would I still prefer to have more data than less? Yes, of course.

They are however both pointing out that, in some instances, more traditional statistical methods, applied to smaller data sets yield superior results. This is particularly the case where data are repurposed and the use to which they are put is different to the considerations when they were collected; something which is arguably more likely to be the case where general purpose Big Data sets are leveraged without reference to other information.

Also, when large data sets are collated from many places, the data from each place can have different characteristics. If this variation is not controlled for in models, it may well lead to erroneous findings.

Statistical Methods

Their final observation is that sound statistical methodology needs to be applied to big data sets just as much as more regular ones. The hope that design flaws will simply evaporate when data sets get large enough may be seducing, but it is also dangerously wrong.

Vorhies and Greenemeier are not suggesting that Big Data has no value. However they state that one of its most potent uses may well be as a supplement to existing methods, perhaps extending them, or bringing greater granularity to results. I view such introspection in Data Science circles as positive, likely to lead to improved methods and an indication of growing maturity in the field. It is however worth noting that, in some cases, leverage of Small-but-Well-Designed Data [4] is not only effective, but actually a superior approach. This is certainly something that Data Scientists should bear in mind.
 


 
Notes

 
[1]
 
I’d recommend taking a look at this site regularly. There is a high volume of articles and the quality is variable, but often there are some stand-out pieces.
 
[2]
 
See the original article for the details.
 
[3]
 
The article was in Scientific American and entitled Why Big Data Isn’t Necessarily Better Data.
 
[4]
 
I may have to copyright this term and of course the very elegant abridgement, SBWDD.

 

 

How to be Surprisingly Popular

Popular with the Crowd
 
Introduction

This article is about the wisdom of the crowd [1], or more particularly its all too frequent foolishness. I am going to draw on a paper recently published in Nature by a cross-disciplinary team from the Massachusetts Institute of Technology and Princeton University. The authors are Dražen Prelec, H. Sebastian Seung and John McCoy. The paper’s title is A solution to the single-question crowd wisdom problem [2]. Rather than reinvent the wheel, here is a section from the abstract (with my emphasis):

Once considered provocative, the notion that the wisdom of the crowd is superior to any individual has become itself a piece of crowd wisdom, leading to speculation that online voting may soon put credentialed experts out of business. Recent applications include political and economic forecasting, evaluating nuclear safety, public policy, the quality of chemical probes, and possible responses to a restless volcano. Algorithms for extracting wisdom from the crowd are typically based on a democratic voting procedure. […] However, democratic methods have serious limitations. They are biased for shallow, lowest common denominator information, at the expense of novel or specialized knowledge that is not widely shared.

 
 
The Problems

The authors describe some compelling examples of where a crowd-based approach ignores the aforementioned specialised knowledge. I’ll cover a couple of these in a second, but let me first add my own.

How heavy is a proton?

Suppose we ask 1,000 people to come up with an estimate of the mass of a proton. One of these people happens to have won the Nobel Prize for Physics the previous year. Is the average of the estimates provided by the 1,000 people likely to be more accurate, or is the estimate of the one particularly qualified person going to be superior? There is an obvious answer to this question [3].

Lest it be thought that the above flaw in the wisdom of the crowd is confined to populations including a Nobel Laureate, I’ll reproduce a much more quotidian example from the Nature paper [4].

Philadelphia or Harrisburg?

[..] imagine that you have no knowledge of US geography and are confronted with questions such as: Philadelphia is the capital of Pennsylvania, yes or no? And, Columbia is the capital of South Carolina, yes or no? You pose them to many people, hoping that majority opinion will be correct. [in an actual exercise the team carried out] this works for the Columbia question, but most people endorse the incorrect answer (yes) for the Philadelphia question. Most respondents may only recall that Philadelphia is a large, historically significant city in Pennsylvania, and conclude that it is the capital. The minority who vote no probably possess an additional piece of evidence, that the capital is Harrisburg. A large panel will surely include such individuals. The failure of majority opinion cannot be blamed on an uninformed panel or flawed reasoning, but represents a defect in the voting method itself.

I’m both a good and bad example here. I know the capital of Pennsylvania is Harrisburg because I have specialist knowledge [5]. However my acquaintance with South Carolina is close to zero. I’d therefore get the first question right and have a 50 / 50 chance on the second (all other things being equal of course). My assumption is that Columbia is, in general, much more well-known than Harrisburg for some reason.

Confidence Levels

The authors go on to cover the technique that is often used to try to address this type of problem in surveys. Respondents are also asked how confident they are about their answer. Thus a tentative “yes” carries less weight than a definitive “yes”. However, as the authors point out, such an approach only works if correct responses are strongly correlated with respondent confidence. As is all too evident from real life, people are often both wrong and very confident about their opinion [6]. The authors extended their Philadelphia / Columbia study to apply confidence weightings, but with no discernible improvement.
 
 
A Surprisingly Popular Solution

As well as identifying the problem, the authors suggest a solution and later go on to demonstrate its efficacy. Again quoting from the paper’s abstract:

Here we propose the following alternative to a democratic vote: select the answer that is more popular than people predict. We show that this principle yields the best answer under reasonable assumptions about voter behaviour, while the standard ‘most popular’ or ‘most confident’ principles fail under exactly those same assumptions.

Let’s use the examples of capitals of states again here (as the authors do in the paper). As well as asking respondents, “Philadelphia is the capital of Pennsylvania, yes or no?” you also ask them “What percentage of people in this survey will answer ‘yes’ to this question?” The key is then to compare the actual survey answers with the predicted survey answers.

Columbia and Philadelphia [click to view a larger version in a new tab]

As shown in the above exhibit, in the authors’ study, when people were asked whether or not Columbia is the capital of South Carolina, those who replied “yes” felt that the majority of respondents would agree with them. Those who replied “no” symmetrically felt that the majority of people would also reply “no”. So no surprises there. Both groups felt that the crowd would agree with their response.

However, in the case of whether or not Philadelphia is the capital of Pennsylvania there is a difference. While those who replied “yes” also felt that the majority of people would agree with them, amongst those who replied “no”, there was a belief that the majority of people surveyed would reply “yes”. This is a surprise. People who make the correct response to this question feel that the wisdom of the crowd will be incorrect.

In the Columbia example, what people predict will be the percentage of people replying “yes” tracks with the actual response rate. In the Philadelphia example, what people predict will be the percentage of people replying “yes” is significantly less than the actual proportion of people making this response [7]. Thus a response of “no” to “Philadelphia is the capital of Pennsylvania, yes or no?” is surprisingly popular. The methodology that the authors advocate would then lead to the surprisingly popular answer (i.e. “no”) actually being correct; as indeed it is. Because there is no surprisingly popular answer in the Columbia example, then the result of a democratic vote stands; which is again correct.

To reiterate: a surprisingly popular response will overturn the democratic verdict, if there is no surprisingly popular response, the democratic verdict is unmodified.

Discriminating about Art

As well as confirming the superiority of the surprisingly popular approach (as opposed to either weighted or non-weighted democratic votes) with questions about state capitals, the authors went on to apply their new technique in a range of other areas [8].

  • Study 1 used 50 US state capitals questions, repeating the format [described above] with different populations [9].
     
  • Study 2 employed 80 general knowledge questions.
     
  • Study 3 asked professional dermatologists to diagnose 80 skin lesion images as benign or malignant.
     
  • Study 4 presented 90 20th century artworks [see the images above] to laypeople and art professionals, and asked them to predict the correct market price category.

Taking all responses across the four studies into account [10], the central findings were as follows [11]:

We first test pairwise accuracies of four algorithms: majority vote, surprisingly popular (SP), confidence-weighted vote, and max. confidence, which selects the answer endorsed with highest average confidence.

  • Across all items, the SP algorithm reduced errors by 21.3% relative to simple majority vote (P < 0.0005 by two-sided matched-pair sign test).
     
  • Across the items on which confidence was measured, the reduction was:
    • 35.8% relative to majority vote (P < 0.001),
    • 24.2% relative to confidence-weighted vote (P = 0.0107) and
    • 22.2% relative to max. confidence (P < 0.13).

The authors go on to further kick the tyres [12] on these results [13] without drawing any conclusions that deviate considerably from the ones they first present and which are reproduced above. The surprising finding is that the surprisingly popular algorithm significantly out-performs the algorithms normally used in wisdom of the crowd polling. This is a major result, in theory at least.
 
 
Some Thoughts

Tools and Toolbox

At the end of the abstract, the authors state that:

Like traditional voting, [the surprisingly popular algorithm] accepts unique problems, such as panel decisions about scientific or artistic merit, and legal or historical disputes. The potential application domain is thus broader than that covered by machine learning […].

Given the – justified – attention that has been given to machine learning in recent years, this is a particularly interesting claim. More broadly, SP seems to bring much needed nuance to the wisdom of the crowd. It recognises that the crowd may often be right, but also allows better informed minorities to override the crowd opinion in specific cases. It does this robustly in all of the studies that the authors conducted. It will be extremely interesting to see this novel algorithm deployed in anger, i.e. in a non-theoretical environment. If its undoubted promise is borne out – and the evidence to date suggests that it will be – then statisticians will have a new and powerful tool in their arsenal and a range of predictive activities will be improved.

The scope of applicability of the SP technique is as wide as that of any wisdom of the crowd approach and, to repeat the comments made by the authors in their abstract, has recently included:

[…] political and economic forecasting, evaluating nuclear safety, public policy, the quality of chemical probes, and possible responses to a restless volcano

If the author’s initial findings are repeated in “live” situations, then the refinement to the purely democratic approach that SP brings should elevate an already useful approach to being an indispensable one in many areas.

I will let the authors have a penultimate word [14]:

Although democratic methods of opinion aggregation have been influential and productive, they have underestimated collective intelligence in one respect. People are not limited to stating their actual beliefs; they can also reason about beliefs that would arise under hypothetical scenarios. Such knowledge can be exploited to recover truth even when traditional voting methods fail. If respondents have enough evidence to establish the correct answer, then the surprisingly popular principle will yield that answer; more generally, it will produce the best answer in light of available evidence. These claims are theoretical and do not guarantee success in practice, as actual respondents will fall short of ideal. However, it would be hard to trust a method [such as majority vote or confidence-weighted vote] if it fails with ideal respondents on simple problems like [the Philadelphia one]. To our knowledge, the method proposed here is the only one that passes this test.

US Presidential Election Polling [borrowed from Wikipedia]

The ultimate thought I will present in this article is an entirely speculative one. The authors posit that their method could be applied to “potentially controversial topics, such as political and environmental forecasts”, while cautioning that manipulation should be guarded against. Their suggestion leads me wonder what impact on the results of opinion polls a suitably formed surprisingly popular questionnaire would have had in the run up to both the recent UK European Union Referendum and the plebiscite for the US Presidency. Of course it is now impossible to tell, but maybe some polling organisations will begin to incorporate this new approach going forward. It can hardly make things worse.
 


 
Notes

 
[1]
 
According to Wikipedia, the phenomenon that:

A large group’s aggregated answers to questions involving quantity estimation, general world knowledge, and spatial reasoning has generally been found to be as good as, and often better than, the answer given by any of the individuals within the group.

The authors of the Nature paper question whether this is true in all circumstances.

 
[2]
 
Prelec, D., Seung, H.S., McCoy, J., (2017). A solution to the single-question crowd wisdom problem. Nature 541, 532–535.

You can view a full version of this paper care of Springer Nature SharedIt at the following link. ShareIt is Springer’s content sharing initiative.

Direct access to the article on Nature’s site (here) requires a subscription to the journal.

 
[3]
 
This example is perhaps an interesting rejoinder to the increasing lack of faith in experts in the general population, something I covered in Toast.

Of course the answer is approximately: 1.6726219 × 10-27 kg.

 
[4]
 
I have lightly edited this section but abjured the regular bracketed ellipses (more than one […] as opposed to conic sections as I note elsewhere). This is both for reasons of readability and also as I have not yet got to some points that the authors were making in this section. The original text is a click away.
 
[5]
 
My wife is from this state.
 
[6]
 
Indeed it sometimes seems that the more wrong the opinion, the more certain that people believe it to be right.

Here the reader is free to insert whatever political example fits best with their worldview.

 
[7]
 
Because many people replying “no” felt that a majority would disagree with them.
 
[8]
 
Again I have lightly edited this text.
 
[9]
 
To provide a bit of detail, here the team created a questionnaire with 50 separate questions sets of the type:

  1. {Most populous city in a state} is the capital of {state}: yes or no?
     
  2. How confident are you in your answer (50- 100%)?
     
  3. What percentage of people surveyed will respond “yes” to this question? (1 – 100%)

This was completed by 83 people split between groups of undergraduate and graduate students at both MIT and Princeton. Again see the paper for further details.

 
[10]
 
And eliding some nuances such as some responses being binary (yes/no) and others a range (e.g. the dermatologists were asked to rate the chance of malignancy on a six point scale from “absolutely uncertain to absolutely certain”). Also respondents were asked to provide their confidence in some studies and not others.
 
[11]
 
Once more with some light editing.
 
[12]
 
This is a technical term employed in scientific circles an I apologise if my use of jargon confuses some readers.
 
[13]
 
Again please see the actual paper for details.
 
[14]
 
Modified very slightly by my last piece of editing.

 

 

A Sweeter Spot for the CDO?

Home run

I recently commented on an article by Bruno Aziza (@brunoaziza) from AtScale [1]. As mentioned in this earlier piece, Bruno and I have known each other for a while. After I published my article – and noting my interest in all things CDO [2] – he dropped me a line, drawing my attention to a further piece he had penned: CDOs: They Are Not Who You Think They Are. As with most things Bruno writes, I’d suggest it merits taking a look. Here I’m going to pick up on just a few pieces.

First of all, Bruno cites Gartner saying that:

[…] they found that there were about 950 CDOs in the world already.

In one way that’s a big figure, in another, it is a small fraction of the at least medium-sized companies out there. So it seems that penetration of the CDO role still has some way to go.

Bruno goes on to list a few things which he believes a CDO is not (e.g. a compliance officer, a finance expert etc.) and suggests that the CDO role works best when reporting to the CEO [3], noting that:

[…] every CEO that’s not analytically driven will have a hard time gearing its company to success these days.

He closes by presenting the image I reproduce below:

CDO Venn Diagram [borrowed from AtScale]

and adding the explanatory note:

  • The CDO is at the intersection of Innovation, Compliance and Data Expertise. When all he/she just does is compliance, it’s danger. They will find resistance at first and employees will question the value the CDO office adds to the company’s bottom line.

First of all kudos for a correct use of the term Venn Diagram [4]. Second I agree that the role of CDO is one which touches on many different areas. In each of these, while as Bruno says, the CDO may not need to be an expert, a working knowledge would be advantageous [5]. Third I wholeheartedly support the assertion that a CDO who focusses primarily on compliance (important as that may well be) will fail to get traction. It is only by blending compliance work with the leveraging of data for commercial advantage in which organisations will see value in what a CDO does.

Finally, Bruno’s diagram put me in mind of the one I introduced in The Chief Data Officer “Sweet Spot”. In this article, the image I presented touched each of the principle points of a compass (North, South, East and West). My assertion was that the CDO needed to sit at the sweet spot between respectively Data Synthesis / Data Compliance and Business Expertise / Technical Expertise. At the end of this piece, I suggested that in reality the intervening compass points (North West, South East, North East and South West) should also appear, reflecting other spectrums that the CDO needs to straddle. Below I have extended my earlier picture to include these other points and labeled the additional extremities between which I think any successful CDO must sit. Hopefully I have done this in a way that is consistent with Bruno’s Venn diagram.

Expanded CDO Sweet Spot

The North East / South West axis is one I mentioned in passing in my earlier text. While in my experience business is seldom anything but usual, BAU has slipped into the lexicon and it’s pointless to pretend that it hasn’t. Equally Change has come to mean big and long-duration change, rather than the hundreds of small changes that tend to make up BAU. In any case, regardless of the misleading terminology, the CDO must be au fait with both types of activity. The North West / South East axis is new and inspired by Bruno’s diagram. In today’s business climate, I believe that the successful CDO must be both innovative and have an ability to deliver on ideas that he or she generates.

As I have mentioned before, finding someone who sits at the nexus of either Bruno’s diagram or mine is not a trivial exercise. Equally, being a CDO is not a simple job; then very few worthwhile things are easy to achieve in my experience.
 


 
Notes

 
[1]
 
Do any technologies grow up or do they only come of age?
 
[2]
 
A selection of CDO-centric articles, in chronological order:

* At least that’s the term I was using to describe what is now called a Chief Data Officer back in 2009.

 
[3]
 
Theme #1 in 5 Themes from a Chief Data Officer Forum
 
[4]
 
I have got this wrong myself in these very pages, e.g. in A Single Version of the Truth?, in the section titled Ordo ab Chao. I really, really ought to know better!
 
[5]
 
I covered some of what I see as being requirements of the job in Wanted – Chief Data Officer.

 

 

Predictions about Prediction

2017 the Road Ahead [Borrowed from Eckerson Group]

   
“Prediction and explanation are exactly symmetrical. Explanations are, in effect, predictions about what has happened; predictions are explanations about what’s going to happen.”

– John Rogers Searle

 

The above image is from Eckerson Group‘s article Predictions for 2017. Eckerson Group’s Founder and Principal Consultant, Wayne Eckerson (@weckerson), is someone whose ideas I have followed on-line for several years; indeed I’m rather surprised I have not posted about his work here before today.

As was possibly said by a variety of people, “prediction is very difficult, especially about the future” [1]. I did turn my hand to crystal ball gazing back in 2009 [2], but the Eckerson Group’s attempt at futurology is obviously much more up-to-date. As per my review of Bruno Aziza’s thoughts on the AtScale blog, I’m not going to cut and paste the text that Wayne and his associates have penned wholesale, instead I’d recommend reading the original article.

Here though are a number of points that caught my eye, together with some commentary of my own (the latter appears in italics below). I’ll split these into the same groups that Wayne & Co. use and also stick to their indexing, hence the occasional gaps in numbering. Where I have elided text, I trust that I have not changed the intended meaning:
 
 
Data Management

Data Management

1. The enterprise data marketplace becomes a priority. As companies begin to recognize the undesirable side effects of self-service they are looking for ways to reap self-service benefits without suffering the downside. […] The enterprise data marketplace returns us to the single-source vision that was once touted as the real benefit of Enterprise Data Warehouses.
  I’ve always thought of self-service as something of a cop-out. It tends to avoid data teams doing anything as arduous (and in some cases out of their comfort zone) as understanding what makes a business tick and getting to grips with the key questions that an organisation needs to answer in order to be successful [3]. With this messy and human-centric stuff out of the way, the data team can retreat into the comfort of nice orderly technological matters or friendly statistical models.

However, what Eckerson Group describe here is “an Amazon-like data marketplace”, which it seems to me has more of a chance of being successful. However, such a marketplace will only function if it embodies the same focus on key business questions and how they are answered. The paradigm within which such questions are framed may be different, more community based and more federated for example, but the questions will still be of paramount importance.

 
3.
 
New kinds of data governance organizations and practices emerge. Long-standing, command-and-control data governance practices fail to meet the challenges of big data and of data democratization. […]
  I think that this is overdue. To date Data Governance, where it is implemented at all, tends to be too police-like. I entirely agree that there are circumstances in which a Data Governance team or body needs to be able to put its foot down [4], but if all that Data Governance does is police-work, then it will ultimately fail. Instead good Data Governance needs to recognise that it is part of a much more fluid set of processes [5], whose aim is to add business value; to facilitate things being done as well as sometimes to stop the wrong path being taken.

 
Data Science

Data Science

1. Self-service and automated predictive analytics tools will cause some embarrassing mistakes. Business users now have the opportunity to use predictive models but they may not recognize the limits of the models themselves. […]
  I think this is a very valid point. As well as not understanding the limitations of some models [6], there is not widespread understanding of statistics in many areas of business. The concept of a central prediction surrounded by different outcomes with different probabilities is seldom seen in commercial circles [7]. In addition there seems to be a lack of appreciation of how big an impact the statistical methodology employed can have on what a model tells you [8].

 
Business Analytics

Business Analytics

1. Modern analytic platforms dominate BI. Business intelligence (BI) has evolved from purpose-built tools in the 1990s to BI suites in the 2000s to self-service visualization tools in the 2010s. Going forward, organizations will replace tools and suites with modern analytics platforms that support all modes of BI and all types of users […]
  Again, if it comes to fruition, such consolidation is overdue. Ideally the tools and technologies will blend into the background, good data-centric work is never about the technology and always about the content and the efforts involved in ensuring that it is relevant, accurate, consistent and timely [9]. Also information is often of most use when it is made available to people taking decisions at the precise point that they need it. This observation highlights the need for data to be integrated into systems and digital estates instead of simply being bound to an analytical hub.

 
So some food for thought from Wayne and his associates. The points they make (including those which I haven’t featured in this article) are serious and well-thought-out ones. It will be interesting to see how things have moved on by the beginning of 2018.
 


 
Notes

 
[1]
 
According to WikiQuotes, this has most famously been attributed to Danish theoretical physicist and father of Quantum Mechanics, Niels Bohr (in Teaching and Learning Elementary Social Studies (1970) by Arthur K. Ellis, p. 431). However it has also been ascribed to various humourists, the Danish poet Piet Hein: “det er svært at spå – især om fremtiden” and Danish cartoonist Storm P (Robert Storm Petersen). Perhaps it is best to say that a Dane made the comment and leave it at that.

Of course similar words have also been said to have been originated by Yogi Berra, but then that goes for most malapropisms you could care to mention. As Mr Berra himself says “I really didn’t say everything I said”.

 
[2]
 
See Trends in Business Intelligence. I have to say that several of these have come to pass, albeit sometimes in different ways to the ones I envisaged back then.
 
[3]
 
For a brief review of what is necessary see What should companies consider before investing in a Business Intelligence solution?
 
[4]
 
I wrote about the unpleasant side effects of a Change Programmes unfettered by appropriate Data Governance in Bumps in the Road, for example.
 
[5]
 
I describe such a set of processes in Data Management as part of the Data to Action Journey.
 
[6]
 
I explore some simmilar territory to that presented by Eckerson Group in Data Visualisation – A Scientific Treatment.
 
[7]
 
My favourite counterexample is provided by The Bank of England.

The Old Lady of Threadneedle Street is clearly not a witch
An inflation prediction from The Bank of England
Illustrating the fairly obvious fact that uncertainty increases in proportion to time from now.
 
[8]
 
This is an area I cover in An Inconvenient Truth.
 
[9]
 
I cover this assertion more fully in A bad workman blames his [Business Intelligence] tools.

 

 

20 Risks that Beset Data Programmes

Data Programme Risks

This article draws extensively on elements of the framework I use to both highlight and manage risks on data programmes. It has its genesis in work that I did early in 2012 (but draws on experience from the years before this). I have tried to refresh the content since then to reflect new thinking and new developments in the data arena.
 
 
Introduction

What are my motivations in publishing this article? Well I have both designed and implemented data and information programmes for over 17 years. In the majority of cases my programme work has been a case of executing a data strategy that I had developed myself [1]. While I have generally been able to steer these programmes to a successful outcome [2], there have been both bumps in the road and the occasional blind alley, requiring a U-turn and another direction to be selected. I have also been able to observe data programmes that ran in parallel to mine in different parts of various organisations. Finally, I have often been asked to come in and address issues with an existing data programme; something that appears to happens all too often. In short I have seen a lot of what works and what does not work. Having also run other types of programmes [3], I can also attest to data programmes being different. Failure to recognise this difference and thus approaching a data programme just like any other piece of work is one major cause of issues [4].

Before I get into my list proper, I wanted to pause to highlight a further couple of mistakes that I have seen made more than once; ones that are more generic in nature and thus don’t appear on my list of 20 risks. The first is to assume that the way that an organisation’s data is controlled and leveraged can be improved in a sustainable way by just kicking off a programme. What is more important in my experience is to establish a data function, which will then help with both the governance and exploitation of data. This data function, ideally sitting under a CDO, will of course want to initiate a range of projects, from improving data quality, to sprucing up reporting, to establishing better analytical capabilities. Best practice is to gather these activities into a programme, but things work best if the data function is established first, owns such a programme and actively partakes in its execution.

Data is for life...

As well as the issue of ongoing versus transitory accountability for data and the undoubted damage that poorly coordinated change programmes can inflict on data assets, another driver for first establishing a data function is that data needs will always be there. On the governance side, new systems will be built, bought and integrated, bringing new data challenges. On the analytical side, there will always be new questions to be answered, or old ones to be reevaluated. While data-centric efforts will generate many projects with start and end dates, the broad stream of data work continues on in a way that, for example, the implementation of a new B2C capability does not.

The second is to believe that you will add lasting value by outsourcing anything but targeted elements of your data programme. This is not to say that there is no place for such arrangements, which I have used myself many times, just that one of the lasting benefits of gimlet-like focus on data is the IP that is built up in the data team; IP that in my experience can be leveraged in many different and beneficial ways, becoming a major asset to the organisation [5].

Having made these introductory comments, let’s get on to the main list, which is divided into broadly chronological sections, relating to stages of the programme. The 10 risks which I believe are either most likely to materialise, or which will probably have the greatest impact are highlighted in pale yellow.
 
 
Up-front Risks

In the beginning

Risk Potential Impact
1. Not appreciating the size of work for both business and technology resources. Team is set up to fail – it is neither responsive enough to business needs (resulting in yet more “unofficial” repositories and additional fragmentation), nor is appropriate progress is made on its central objective.
2. Not establishing a dedicated team. The team never escapes from “the day job” or legacy / BAU issues; the past prevents the future from being built.
3. Not establishing a unified and collaborative team. Team is plagued by people pursuing their own agendas and trashing other people’s approaches, this consumes management time on non-value-added activities, leads to infighting and dissipates energy.
4. Staff lack skills and prior experience of data programmes. Time spent educating people rather than getting on with work. Sub-optimal functionality, slippages, later performance problems, higher ongoing support costs.
5. Not establishing an appropriate management / governance structure. Programme is not aligned with business needs, is not able to get necessary time with business users and cannot negotiate the inevitable obstacles that block its way. As a result, the programme gets “stuck in the mud”.
6. Failing to recognise ongoing local needs when centralising. Local business units do not have their pressing needs attended to and so lose confidence in the programme and instead go their own way. This leads to duplication of effort, increased costs and likely programme failure.

With risk 2 an analogy is trying to build a house in your spare time. If work can only be done in evenings or at the weekend, then this is going to take a long time. Nevertheless organisations too frequently expect data programmes to be absorbed in existing headcount and fitted in between people’s day jobs.

We can we extend the building metaphor to cover risk 4. If you are going to build your own house, it would help that you understand carpentry, plumbing, electricals and brick-laying and also have a grasp on the design fundamentals of how to create a structure that will withstand wind rain and snow. Too often companies embark on data programmes with staff who have a bit of a background in reporting or some related area and with managers who have never been involved in a data programme before. This is clearly a recipe for disaster.

Risk 5 reminds us that governance is also important – both to ensure that the programme stays focussed on business needs and also to help the team to negotiate the inevitable obstacles. This comes back to a successful data programme needing to be more than just a technology project.
 
 
Programme Execution Risks

Programme execution

Risk Potential Impact
7. Poor programme management. The programme loses direction. Time is expended on non-core issues. Milestones are missed. Expenditure escalates beyond budget.
8. Poor programme communication. Stakeholders have no idea what is happening [6]. The programme is viewed as out of touch / not pertinent to business issues. Steering does not understand what is being done or why. Prospective users have no interest in the programme.
9. Big Bang approach. Too much time goes by without any value being created. The eventual Big Bang is instead a damp squib. Large sums of money are spent without any benefits.
10. Endless search for the perfect solution / adherence to overly theoretical approaches. Programme constantly polishes rocks rather than delivering. Data models reflect academic purity rather than real-world performance and maintenance needs.
11. Lack of focus on interim deliverables. Business units become frustrated and seek alternative ways to meet their pressing needs. This leads to greater fragmentation and reputational damage to programme.
12. Insufficient time spent understanding source system data and how data is transformed as it flows between systems. Data capabilities that do not reflect business transactions with fidelity. There is inconsistency with reports directly drawn from source systems. Reconciliation issues arise (see next point).
13. Poor reconciliation. If analytical capabilities do not tell a consistent story, they will not be credible and will not be used.
14. Strong approach to data quality. Data facilities are seen as inaccurate because of poor data going into them. Data facilities do not match actual business events due to either massaging of data or exclusion of transactions with invalid attributes.

Probably the single most common cause of failure with data programmes – and indeed or ERP projects and acquisitions and any other type of complex endeavour – is risk 7, poor programme management. Not only do programme managers have to be competent, they should also be steeped in data matters and have a good grasp of the factors that differentiate data programmes from more general work.

Relating to the other highlighted risks in this section, the programme could spend two years doing work without surfacing anything much and then, when they do make their first delivery, this is a dismal failure. In the same vein, exclusive focus on strategic capabilities could prevent attention being paid to pressing business needs. At the other end of the spectrum, interim deliveries could spiral out of control, consuming all of the data team’s time and meaning that the strategic objective is never reached. A better approach is that targeted and prioritised interims help to address pressing business needs, but also inform more strategic work. From the other perspective, progress on strategic work-streams should be leveraged whenever it can be, perhaps in less functional manners that the eventual solution, but good enough and also helping to make sure that the final deliveries are spot on [7].
 
 
User Requirement Risks

Dear Santa

Risk Potential Impact
15. Not enough up-front focus on understanding key business decisions and the information necessary to take them. Analytic capabilities do not focus on what people want or need, leading to poor adoption and benefits not being achieved.
16. In the absence of the above, the programme becoming a technology-driven one. The business gets what IT or Change think that they need, not what is actually needed. There is more focus on shiny toys than on actionable information. The programme forgets the needs of its customers.
17. A focus on replicating what the organisation already has but in better tools, rather than creating what it wants. Beautiful data visualisations that tell you close to nothing. Long lists of existing reports with their fields cross-referenced to each other and a new solution that is essentially the lowest common denominator of what is already in place; a step backwards.

The other most common reasons for data programme failure is a lack of focus on user needs and insufficient time spent with business people to ensure that systems reflect their requirements [8].
 
 
Integration Risk

Lego

Risk Potential Impact
18. Lack of leverage of new data capabilities in front-end / digital systems. These systems are less effective. The data team is jealous about its capabilities being the only way that users should get information, rather than adopting a more pragmatic and value-added approach.

It is important for the data team to realise that their work, however important, is just one part of driving a business forward. Opportunities to improve other system facilities by the leverage of new data structures should be taken wherever possible.
 
 
Deployment Risks

Education

Risk Potential Impact
19. Education is an afterthought, training is technology- rather than business-focused. People neither understand the capabilities of new analytical tools, nor how to use them to derive business value. Again this leads to poor adoption and little return on investment.
20. Declaring success after initial implementation and training. Without continuing to water the immature roots, the plant withers. Early adoption rates fall and people return to how they were getting information pre-launch. This means that the benefits of the programme not realised.

Finally excellent technical work needs to be complemented with equal attention to business-focussed education, training using real-life scenarios and assiduous follow up. These things will make or break the programme [9].
 
 
Summary.

Of course I don’t claim that the above list is exhaustive. You could successfully mitigate all of the above risks on your data programme, but still get sunk by some other unforeseen problem arising. There is a need to be flexible and to adapt to both events and how your organisation operates; there are no guarantees and no foolproof recipes for success [10].

My recommendation to data professionals is to develop your own approach to risk management based on your own experience, your own style and the culture within which you are operating. If just a few of the items on my list of risks can be usefully amalgamated into this, then I will feel that this article has served its purpose. If you are embarking on a data programme, maybe your first one, then be warned that these are hard and your reserves of perseverance will be tested. I’d suggest leveraging whatever tools you can find in trying to forge ahead.

It is also maybe worth noting that, somewhat contrary to my point that data programmes are different, a few of the risks that I highlight above could be tweaked to apply to more general programmes as well. Hopefully the things that I have learnt over the last couple of decades of running data programmes will be something that can be of assistance to you in your own work.
 


 
Notes

 
[1]
 
For my thoughts on developing data (or interchangeably) information strategies see:

  1. Forming an Information Strategy: Part I – General Strategy
  2. Forming an Information Strategy: Part II – Situational Analysis and
  3. Forming an Information Strategy: Part III – Completing the Strategy

or the CliffsNotes versions of these on LinkedIn:

  1. Information Strategy: 1) General Strategy
  2. Information Strategy: 2) Situational Analysis and
  3. Information Strategy: 3) Completing the Strategy
 
[2]
 
Indeed sometimes an award-winning one.
 
[3]
 
An abridged list would include:

  • ERP design, development and implementation
  • ERP selection and implementation
  • CRM design, development and implementation
  • CRM selection and implementation
  • Integration of acquired companies
  • Outsourcing of systems maintenance and support
 
[4]
 
For an examination of this area you can start with A more appropriate metaphor for Business Intelligence projects. While written back in 2008-9 the content of this article is as pertinent today as it was back then.
 
[5]
 
I cover this area in greater detail in Is outsourcing business intelligence a good idea?
 
[6]
 
Stakeholder

Probably a bad idea to make this stakeholder unhappy (see also Themes from a Chief Data Officer Forum – the 180 day perspective, note [3]).

 
[7]
 
See Vision vs Pragmatism, Holistic vs Incremental approaches to BI and Tactical Meandering for further background on this area.
 
[8]
 
This area is treated in the strategy articles appearing in note [1] above. In addition, some potential approaches to elements of effective requirements gathering are presented in Scaling-up Performance Management and Developing an international BI strategy.
 
[9]
 
Of pertinence here is my trilogy on the cultural transformation aspects of information programmes:

  1. Marketing Change
  2. Education and cultural transformation
  3. Sustaining Cultural Change
 
[10]
 
Something I stress forcibly in Recipes for Success?

 

 

Toast

Acrylamide [borrowed from Wikipedia]

Foreword

This blog touches on a wide range of topics, including social media, cultural transformation, general technology and – last but not least – sporting analogies. However, its primary focus has always been on data and information-centric matters in a business context. Having said this, all but the more cursory of readers will have noted the prevalence of pieces with a Mathematical or Scientific bent. To some extent this is a simple reflection of the author’s interests and experience, but a stronger motivation is often to apply learnings from different fields to the business data arena. This article is probably more scientific in subject matter than most, but I will also look to highlight some points pertinent to commerce towards the end.
 
 
Introduction

In Science We Trust?

The topic I want to turn my attention to in this article is public trust in science. This is a subject that has consumed many column inches in recent years. One particular area of focus has been climate science, which, for fairly obvious political reasons, has come in for even more attention than other scientific disciplines of late. It would be distracting to get into the arguments about climate change and humanity’s role in it here [1] and in a sense this is just the latest in a long line of controversies that have somehow become attached to science. An obvious second example here is the misinformation circling around both the efficacy and side effects of vaccinations [2]. In both of these cases, it seems that at least a sizeable minority of people are willing to query well-supported scientific findings. In some ways, this is perhaps linked to the general mistrust of “experts” and “elites” [3] that was explicitly to the fore in the UK’s European Union Referendum debate [4].

“People in this country have had enough of experts”

– Michael Gove [5], at this point UK Justice Secretary and one of the main proponents of the Leave campaign, speaking on Sky News, June 2016.

Mr Gove was talking about economists who held a different point of view to his own. However, his statement has wider resonance and cannot be simply dismissed as the misleading sound-bite of an experienced politician seeking to press his own case. It does indeed appear that in many places around the world experts are trusted much less than they used to be and that includes scientists.

“Many political upheavals of recent years, such as the rise of populist parties in Europe, Donald Trump’s nomination for the American presidency and Britain’s vote to leave the EU, have been attributed to a revolt against existing elites.”

The Buttonwood column, The Economist, September 2016.

Why has this come to be?
 
 
A Brief [6] History of the Public Perception of Science

Public Perception

Note: This section is focussed on historical developments in the public’s trust in science. If the reader would like to skip on to more toast-centric content, then please click here.

Answering questions about the erosion of trust in politicians and the media is beyond the scope of this humble blog. Wondering what has happened to trust in science is firmly in its crosshairs. One part of the answer is that – for some time – scientists were held in too much esteem and the pendulum was inevitably going to swing back the other way. For a while the pace of scientific progress and the miracles of technology which this unleashed placed science on a pedestal from which there was only one direction of travel. During this period in which science was – in general – uncritically held in great regard, the messy reality of actual science was never really highlighted. The very phrase “scientific facts” is actually something of an oxymoron. What we have is instead scientific theories. Useful theories are consistent with existing observations and predict new phenomena. However – as I explained in Patterns patterns everywhere – a theory is only as good as the latest set of evidence and some cherished scientific theories have been shown to be inaccurate; either in general, or in some specific circumstances [7]. However saying “we have a good model that helps us explain many aspects of a phenomenon and predict more, but it doesn’t cover everything and there are some uncertainties” is a little more of a mouthful than “we have discovered that…”.

There have been some obvious landmarks along the way to science’s current predicament. The unprecedented destruction unleashed by the team working on the Manhattan Project at first made the scientists involved appear God-like. It also seemed to suggest that the path to Great Power status was through growing or acquiring the best Physicists. However, as the prolonged misery caused in Japan by the twin nuclear strikes became more apparent and as the Cold War led to generations living under the threat of mutually assured destruction, the standing attached by the general public to Physicists began to wane; the God-like mantle began to slip. While much of our modern world and its technology was created off the back of now fairly old theories like Quantum Chromodynamics and – most famously – Special and General Relativity, the actual science involved became less and less accessible to the man or woman in the street. For all the (entirely justified) furore about the detection of the Higgs Boson, few people would be able to explain much about what it is and how it fits into the Standard Model of particle physics.

In the area of medicine and pharmacology, the Thalidomide tragedy, where a drug prescribed to help pregnant women suffering from morning sickness instead led to terrible birth defects in more than 10,000 babies, may have led to more stringent clinical trials, but also punctured the air of certainty that had surrounded the development of the latest miracle drug. While medical science and related disciplines have vastly improved the health of much of the globe, the glacial progress in areas such as oncology has served as a reminder of the fallibility of some scientific endeavours. In a small way, the technical achievements of that apogee of engineering, NASA, were undermined by loss of crafts and astronauts. Most notably the Challenger and Columbia fatalities served to further remove the glossy veneer that science had acquired in the 1940s to 1960s.

Lest it be thought at this point that I am decrying science, or even being anti-scientific, nothing could be further from the truth. I firmly believe that the ever growing body of scientific knowledge is one of humankind’s greatest achievements, if not its greatest. From our unpromising vantage point on an unremarkable little planet in our equally common-all-garden galaxy we have been able to grasp many of the essential truths about the whole Universe from the incomprehensibly gigantic to the most infinitesimal constituent of a sub-atomic particle. However, it seems that many people do not fully embrace the grandeur of our achievements, or indeed in many cases the unexpected beauty and harmony that they have revealed [8]. It is to the task of understanding this viewpoint that I am addressing my thoughts.

More recently, the austerity that has enveloped much of the developed world since the 2008 Financial Crisis has had two reinforcing impacts on science in many countries. First funding has often been cut, leading to pressure on research programmes and scientists increasingly having to make an economic case for their activities; a far cry from the 1950s. Second, income has been effectively stagnant for the vast majority of people, this means that scientific expenditure can seem something of a luxury and also fuels the anti-elite feelings cited by The Economist earlier in this article.

Anita Makri

Into this seeming morass steps Anita Makri, “editor/writer/producer and former research scientist”. In a recent Nature article she argues that the form of science communicated in popular media leaves the public vulnerable to false certainty. I reproduce some of her comments here:

“Much of the science that the public knows about and admires imparts a sense of wonder and fun about the world, or answers big existential questions. It’s in the popularization of physics through the television programmes of physicist Brian Cox and in articles about new fossils and quirky animal behaviour on the websites of newspapers. It is sellable and familiar science: rooted in hypothesis testing, experiments and discovery.

Although this science has its place, it leaves the public […] with a different, outdated view to that of scientists of what constitutes science. People expect science to offer authoritative conclusions that correspond to the deterministic model. When there’s incomplete information, imperfect knowledge or changing advice — all part and parcel of science — its authority seems to be undermined. […] A popular conclusion of that shifting scientific ground is that experts don’t know what they’re talking about.”

– Anita Makri, Give the public the tools to trust scientists, Nature, January 2017.

I’ll come back to Anita’s article again later.
 
 
Food Safety – The Dangers Lurking in Toast

Food Safety

After my speculations about the reasons why science is held in less esteem than once was the case, I’ll return to more prosaic matters; namely food and specifically that humble staple of many a breakfast table, toast. Food science has often fared no better than its brother disciplines. The scientific guidance issued to people wanting to eat healthily can sometimes seem to gyrate wildly. For many years fat was the source of all evil, more recently sugar has become public enemy number one. Red wine was meant to have beneficial effects on heart health, then it was meant to be injurious; I’m not quite sure what the current advice consists of. As Makri states above, when advice changes as dramatically as it can do in food science, people must begin to wonder whether the scientists really know anything at all.

So where does toast fit in? Well the governmental body charged with providing advice about food in the UK is called the Food Standards Agency. They describe their job as “using our expertise and influence so that people can trust that the food they buy and eat is safe and honest.” While the FSA do sterling work in areas such as publicly providing ratings of food hygiene for restaurants and the like, their most recent campaign is one which seems at best ill-advised and at worst another nail in the public perception of the reliability of scientific advice. Such things matter because they contribute to the way that people view science in general. If scientific advice about food is seen as unsound, surely there must be questions around scientific advice about climate change, or vaccinations.

Before I am accused of belittling the FSA’s efforts, let’s consider the campaign in question, which is called Go for Gold and encourages people to consume less acrylamide. Here is some of what the FSA has to say about the matter:

“Today, the Food Standards Agency (FSA) is launching a campaign to ‘Go for Gold’, helping people understand how to minimise exposure to a possible carcinogen called acrylamide when cooking at home.

Acrylamide is a chemical that is created when many foods, particularly starchy foods like potatoes and bread, are cooked for long periods at high temperatures, such as when baking, frying, grilling, toasting and roasting. The scientific consensus is that acrylamide has the potential to cause cancer in humans.

[…]

as a general rule of thumb, aim for a golden yellow colour or lighter when frying, baking, toasting or roasting starchy foods like potatoes, root vegetables and bread.”

– Food Standards Agency, Families urged to ‘Go for Gold’ to reduce acrylamide consumption, January 2017.

The Go for Gold campaign was picked up by various media outlets in the UK. For example the BBC posted an article on its web-site which opened by saying:

Dangerous Toast [borrowed from the BBC]

“Bread, chips and potatoes should be cooked to a golden yellow colour, rather than brown, to reduce our intake of a chemical which could cause cancer, government food scientists are warning.”

– BBC, Browned toast and potatoes are ‘potential cancer risk’, say food scientists, January 2017.

The BBC has been obsessed with neutrality on all subjects recently [9], but in this case they did insert the reasonable counterpoint that:

“However, Cancer Research UK [10] said the link was not proven in humans.”

Acrylamide is certainly a nasty chemical. Amongst other things, it is used in polyacrylamide gel electrophoresis, a technique used in biochemistry. If biochemists mix and pour their own gels, they have to monitor their exposure and there are time-based and lifetime limits as to how often they can do such procedures [11]. Acrylamide has also been shown to lead to cancer in mice. So what could be more reasonable that the FSA’s advice?
 
 
Food Safety – A Statistical / Risk Based Approach

David Spiegelhalter

Earlier I introduced Anita Makri, it is time to meet our second protagonist, David Spiegelhalter, Winton Professor for the Public Understanding of Risk in the Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge [12]. Professor Spiegelhalter has penned a response to the FSA’s Go for Gold campaign. I feel that this merits reading in entirety, but here are some highlights:

“Very high doses [of Acrylamide] have been shown to increase the risk of mice getting cancer. The IARC (International Agency for Research on Cancer) considers it a ‘probable human carcinogen’, putting it in the same category as many chemicals, red meat, being a hairdresser and shift-work.

However, there is no good evidence of harm from humans consuming acrylamide in their diet: Cancer Research UK say that ‘At the moment, there is no strong evidence linking acrylamide and cancer.’

This is not for want of trying. A massive report from the European Food Standards Agency (EFSA) lists 16 studies and 36 publications, but concludes

  ‘In the epidemiological studies available to date, AA intake was not associated with an increased risk of most common cancers, including those of the GI or respiratory tract, breast, prostate and bladder. A few studies suggested an increased risk for renal cell, and endometrial (in particular in never-smokers) and ovarian cancer, but the evidence is limited and inconsistent. Moreover, one study suggested a lower survival in non-smoking women with breast cancer with a high pre-diagnostic exposure to AA but more studies are necessary to confirm this result. (p185)’

[…]

[Based on the EFSA study] adults with the highest consumption of acrylamide could consume 160 times as much and still only be at a level that toxicologists think unlikely to cause increased tumours in mice.

[…]

This all seems rather reassuring, and may explain why it’s been so difficult to observe any effect of acrylamide in diet.”

– David Spiegelhalter, Opinion: How dangerous is burnt toast?, University of Cambridge, January 2017.

Indeed, Professor Spiegelhalter, an esteemed statistician, also points out that most studies will adopt the standard criteria for statistical significance. Given that such significance levels are often set at 5%, then this means that:

“[As] each study is testing an association with a long list of cancers […], we would expect 1 in 20 of these associations to be positive by chance alone.”

He closes his article by stating – not unreasonably – that the FSA’s time and attention might be better spent on areas where causality between an agent and morbidity is well-established, for example obesity. My assumption is that the FSA has a limited budget and has to pick and choose what food issues to weigh in on. Even if we accept for the moment that there is some slight chance of a causal link between the consumption of low levels of acrylamide and cancer, there are plenty of other areas in which causality is firmly established; obesity as mentioned by Professor Spiegelhalter, excessive use of alcohol, even basic kitchen hygiene. It is hard to understand why the FSA did not put more effort into these and instead focussed on an area where the balance of scientific judgement is that there is unlikely to be an issue.

Having a mathematical background perhaps biases me, but I tend to side with Professor Spiegelhalter’s point of view. I don’t want to lay the entire blame for the poor view that some people have of science at the FSA’s door, but I don’t think campaigns like Go for Gold help very much either. The apocryphal rational man or woman will probably deduce that there is not an epidemic of acrylamide poisoning in progress. This means that they may question what the experts at the FSA are going on about. In turn this reduces respect for other – perhaps more urgent – warnings about food and drink. Such a reaction is also likely to colour how the same rational person thinks about “expert” advice in general. All of this can contribute to further cracks appearing in the public edifice of science, an outcome I find very unfortunate.

So what is to be done?
 
 
A Call for a New and More Honest Approach to Science Communications

Honesty is the Best Policy

As promised I’ll return to Anita Makri’s thoughts in the same article referenced above:

“It’s more difficult to talk about science that’s inconclusive, ambivalent, incremental and even political — it requires a shift in thinking and it does carry risks. If not communicated carefully, the idea that scientists sometimes ‘don’t know’ can open the door to those who want to contest evidence.

[…]

Scientists can influence what’s being presented by articulating how this kind of science works when they talk to journalists, or when they advise on policy and communication projects. It’s difficult to do, because it challenges the position of science as a singular guide to decision making, and because it involves owning up to not having all of the answers all the time while still maintaining a sense of authority. But done carefully, transparency will help more than harm. It will aid the restoration of trust, and clarify the role of science as a guide.”

The scientific method is meant to be about honesty. You record what you see, not what you want to see. If the data don’t support your hypothesis, you discard or amend your hypothesis. The peer-review process is meant to hold scientists to the highest levels of integrity. What Makri seems to be suggesting is for scientists to turn their lenses on themselves and how they communicate their work. Being honest where there is doubt may be scary, but not as scary as being caught out pushing certainty where no certainty is currently to be had.
 


 
Epilogue

At the beginning of this article, I promised that I would bring things back to a business context. With lots of people with PhDs in numerate sciences now plying their trade as data scientists and the like, there is an attempt to make commerce more scientific [13]. Understandably, the average member of a company will have less of an appreciation of statistics and statistical methods than their data scientists do. This can lead to data science seeming like magic; the philosopher’s stone [14]. There are obvious parallels here with how Physicists were seen in the period immediately after the Second World War.

Earlier in the text, I mused about what factors may have led to a deterioration in how the public views science and scientists. I think that there is much to be learnt from the issues I have covered in this article. If data scientists begin to try to peddle absolute truth and perfect insight (both of which, it is fair to add, are often expected from them by non-experts), as opposed to ranges of outcomes and probabilities, then the same decline in reputation probably awaits them. Instead it would be better if data scientists heeded Anita Makri’s words and tried to always be honest about what they don’t know as well as what they do.
 


 
Notes

 
[1]
 
Save to note that there really is no argument in scientific circles.

As ever Randall Munroe makes the point pithily in his Earth Temperature Timeline – https://xkcd.com/1732/.

For a primer on the area, you could do worse than watching The Royal Society‘s video:

 
[2]
 
For the record, my daughter has had every vaccine known to the UK and US health systems and I’ve had a bunch of them recently as well.
 
[3]
 
Most scientists I know would be astonished that they are considered part of the amorphous, ill-defined and obviously malevolent global “elite”. Then “elite” is just one more proxy for “the other” something which it is not popular to be in various places in the world at present.
 
[4]
 
Or what passed for debate in these post-truth times.
 
[5]
 
Mr Gove studied English at Lady Margaret Hall, Oxford, where he was also President of the Oxford Union. Clearly Oxford produces less experts than it used to in previous eras.
 
[6]
 
One that is also probably wildly inaccurate and certainly incomplete.
 
[7]
 
So Newton’s celebrated theory of gravitation is “wrong” but actually works perfectly well in most circumstances. The the Rutherford–Bohr model, where atoms are little Solar Systems, with the nucleus circled by electrons much as the planets circle the Sun is “wrong”, but actually does serve to explain a number of things; if sadly not the orbital angular momentum of electrons.
 
[8]
 
Someone should really write a book about that – watch this space!
 
[9]
 
Not least in the aforementioned EU Referendum where it felt the need to follow the views of the vast majority of economists with those of the tiny minority, implying that the same weight be attached to both points of view. For example, 99.9999% of people believe the world to be round, but in the interests of balance my mate Jim reckons it is flat.
 
[10]
 
According to their web-site: “the world’s leading charity dedicated to beating cancer through research”.
 
[11]
 
As attested to personally by the only proper scientist in our family.
 
[12]
 
Unlike Oxford (according to Mr Gove anyway), Cambridge clearly still aspires to creating experts.
 
[13]
 
By this I mean proper science and not pseudo-science like management theory and the like.
 
[14]
 
In the original, non-J.K. Rowling sense of the phrase.

 

 

Do any technologies grow up or do they only come of age?

The 2016 Big Data Maturity Survey (by AtScale)

I must of course start by offering my apologies to that doyen of data experts, Stephen King, for mangling his words to suit the purposes of this article [1].

The AtScale Big Data Maturity Survey for 2016 came to my attention through a connection (see Disclosure below). The survey covers “responses from more than 2,550 Big Data professionals, across more than 1,400 companies and 77 countries” and builds on their 2015 survey.

I won’t use the word clickbait [2], but most of the time documents like this lead you straight to a form where you can add your contact details to the organisation’s marketing database. Indeed you, somewhat inevitably, have to pay the piper to read the full survey. However AtScale are to be commended for at least presenting some of the high-level findings before asking you for the full entry price.

These headlines appear in an article on their blog. I won’t cut and paste the entire text, but a few points that stood out for me included:

  1. Close to 70% [of respondents] have been using Big Data for more than a year (vs. 59% last year)
     
  2. More than 53% of respondents are using Cloud for their Big Data deployment today and 14% of respondents have all their Big Data in the Cloud
     
  3. Business Intelligence is [the] #1 workload for Big Data with 75% of respondents planning on using BI on Big Data
     
  4. Accessibility, Security and Governance have become the fastest growing areas of concern year-over-year, with Governance growing most at 21%
     
  5. Organizations who have deployed Spark [3] in production are 85% more likely to achieve value

Bullet 3 is perhaps notable as Big Data is often positioned – perhaps erroneously – as supporting analytics as opposed to “traditional BI” [4]. On the contrary, it appears that a lot of people are employing it in very “traditional” ways. On reflection this is hardly surprising as many organisations have as yet failed to get the best out of the last wave of information-related technology [5], let alone the current one.

However, perhaps the two most significant trends are the shift from on-premises Big Data to Cloud Big Data and the increased importance attached to Data Governance. The latter was perhaps more of a neglected area in the earlier and more free-wheeling era of Big Data. The rise in concerns about Big Data Governance is probably the single greatest pointer towards the increasing maturity of the area.

It will be interesting to see what the AtScale survey of 2017 has to say in 12 months.
 


 
Disclosure:

The contact in question is Bruno Aziza (@brunoaziza), AtScale’s Chief Marketing Officer. While I have no other connections with AtScale, Bruno and I did make the following video back in 2011 when both of us were at other companies.


 
Notes

 
[1]
 
Excerpted from The Gunslinger.
 
[2]
 
Oops!
 
[3]
 
Apache Hadoop – which has become almost synonymous with Big Data – has two elements, the Hadoop Distributed File Store (HDFS, the piece which deals with storage) and MapReduce (which does processing of data). Apache Spark was developed to improve upon the speed of the MapReduce approach where the same data is accessed many times, as can happen in some queries and algorithms. This is achieved in part by holding some or all of the data to be accessed in memory. Spark works with HDFS and also other distributed file systems, such as Apache Cassandra.
 
[4]
 
How phrases from the past come around again!
 
[5]
 
Some elements of the technology have changed, but the vast majority of the issues I covered in “Why Business Intelligence projects fail” hold as true today as they did back in 2009 when I wrote this piece.