The latest edition of The Data & Analytics Dictionary is now out

The Data and Analytics Dictionary

After a hiatus of a few months, the latest version of the peterjamesthomas.com Data and Analytics Dictionary is now available. It includes 30 new definitions, some of which have been contributed by people like Tenny Thomas Soman, George Firican, Scott Taylor and and Taru Väre. Thanks to all of these for their help.

  1. Analysis
  2. Application Programming Interface (API)
  3. Business Glossary (contributor: Tenny Thomas Soman)
  4. Chart (Graph)
  5. Data Architecture – Definition (2)
  6. Data Catalogue
  7. Data Community
  8. Data Domain (contributor: Taru Väre)
  9. Data Enrichment
  10. Data Federation
  11. Data Function
  12. Data Model
  13. Data Operating Model
  14. Data Scrubbing
  15. Data Service
  16. Data Sourcing
  17. Decision Model
  18. Embedded BI / Analytics
  19. Genetic Algorithm
  20. Geospatial Data
  21. Infographic
  22. Insight
  23. Management Information (MI)
  24. Master Data – additional definition (contributor: Scott Taylor)
  25. Optimisation
  26. Reference Data (contributor: George Firican)
  27. Report
  28. Robotic Process Automation
  29. Statistics
  30. Self-service (BI or Analytics)

Remember that The Dictionary is a free resource and quoting contents (ideally with acknowledgement) and linking to its entries (via the buttons provided) are both encouraged.

If you would like to contribute a definition, which will of course be acknowledged, you can use the comments section here, or the dedicated form, we look forward to hearing from you [1].

If you have found The Data & Analytics Dictionary helpful, we would love to learn more about this. Please post something in the comments section or contact us and we may even look to feature you in a future article.

The Data & Analytics Dictionary will continue to be expanded in coming months.
 


Notes

 
[1]
 
Please note that any submissions will be subject to editorial review and are not guaranteed to be accepted.

peterjamesthomas.com

Another article from peterjamesthomas.com. The home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases.

 

A Simple Data Capability Framework

Data Capability Framework

Introduction

As part of my consulting business, I end up thinking about Data Capability Frameworks quite a bit. Sometimes this is when I am assessing current Data Capabilities, sometimes it is when I am thinking about how to transition to future Data Capabilities. Regular readers will also recall my tripartite series on The Anatomy of a Data Function, which really focussed more on capabilities than purely organisation structure [1].

Detailed frameworks like the one contained in Anatomy are not appropriate for all audiences. Often I need to provide a more easily-absorbed view of what a Data Function is and what it does. The exhibit above is one that I have developed and refined over the last three or so years and which seems to have resonated with a number of clients. It has – I believe – the merit of simplicity. I have tried to distil things down to the essentials. Here I will aim to walk the reader through its contents, much of which I hope is actually self-explanatory.

The overall arrangement has been chosen intentionally, the top three areas are visible activities, the bottom three are more foundational areas [2], ones that are necessary for the top three boxes to be discharged well. I will start at the top left and work across and then down.
 
 
Collation of Data to provide Information

Dashboard

This area includes what is often described as “traditional” reporting [3], Dashboards and analysis facilities. The Information created here is invaluable for both determining what has happened and discerning trends / turning points. It is typically what is used to run an organisation on a day-to-day basis. Absence of such Information has been the cause of underperformance (or indeed major losses) in many an organisation, including a few that I have been brought in to help. The flip side is that making the necessary investments to provide even basic information has been at the heart of the successful business turnarounds that I have been involved in.

The bulk of Business Intelligence efforts would also fall into this area, but there is some overlap with the area I next describe as well.
 
 
Leverage of Data to generate Insight

Voronoi diagram

In this second area we have disciplines such as Analytics and Data Science. The objective here is to use a variety of techniques to tease out findings from available data (both internal and external) that go beyond the explicit purpose for which it was captured. Thus data to do with bank transactions might be combined with publically available demographic and location data to build an attribute model for both existing and potential clients, which can in turn be used to make targeted offers or product suggestions to them on Digital platforms.

It is my experience that work in this area can have a massive and rapid commercial impact. There are few activities in an organisation where a week’s work can equate to a percentage point increase in profitability, but I have seen insight-focussed teams deliver just that type of ground-shifting result.
 
 
Control of Data to ensure it is Fit-for-Purpose

Data controls

This refers to a wide range of activities from Data Governance to Data Management to Data Quality improvement and indeed related concepts such as Master Data Management. Here as well as the obvious policies, processes and procedures, together with help from tools and technology, we see the need for the human angle to be embraced via strong communications, education programmes and aligning personal incentives with desired data quality outcomes.

The primary purpose of this important work is to ensure that the information an organisation collates and the insight it generates are reliable. A helpful by-product of doing the right things in these areas is that the vast majority of what is required for regulatory compliance is achieved simply by doing things that add business value anyway.
 
 
Data Architecture / Infrastructure

Data architecture

Best practice has evolved in this area. When I first started focussing on the data arena, Data Warehouses were state of the art. More recently Big Data architectures, including things like Data Lakes, have appeared and – at least in some cases – begun to add significant value. However, I am on public record multiple times stating that technology choices are generally the least important in the journey towards becoming a data-centric organisation. This is not to say such choices are unimportant, but rather that other choices are more important, for example how best to engage your potential users and begin to build momentum [4].

Having said this, the model that seems to have emerged of late is somewhat different to the single version of the truth aspired to for many years by organisations. Instead best practice now encompasses two repositories: the first Operational, the second Analytical. At a high-level, arrangements would be something like this:

Data architecture

The Operational Repository would contain a subset of corporate data. It would be highly controlled, highly reconciled and used to support both regular reporting and a large chunk of dashboard content. It would be designed to also feed data to other areas, notably Finance systems. This would be complemented by the Analytical Repository, into which most corporate data (augmented by external data) would be poured. This would be accessed by a smaller number of highly skilled staff, Data Scientists and Analytics experts, who would use it to build models, produce one off analyses and to support areas such as Data Visualisation and Machine Learning.

It is not atypical for Operational Repositories to be SQL-based and Analytical Repsoitories to be Big Data-based, but you could use SQL for both or indeed Big Data for both according to the circumstances of an organisation and its technical expertise.
 
 
Data Operating Model / Organisation Design

Organisational design

Here I will direct readers to my (soon to be updated) earlier work on The Anatomy of a Data Function. However, it is worth mentioning a couple of additional points. First an Operating Model for data must encompass the whole organisation, not just the Data Function. Such a model should cover how data is captured, sourced and used across all departments.

Second I think that the concept of a Data Community is important here, a web of like-minded Data Scientists and Analytics people, sitting in various business areas and support functions, but linked to the central hub of the Data Function by common tooling, shared data sets (ideally Curated) and aligned methodologies. Such a virtual data team is of course predicated on an organisation hiring collaborative people who want to be part of and contribute to the Data Community, but those are the types of people that organisations should be hiring anyway [5].
 
 
Data Strategy

Data strategy

Our final area is that of Data Strategy, something I have written about extensively in these pages [6] and a major part of the work that I do for organisations.

It is an oft-repeated truism that a Data Strategy must reflect an overarching Business Strategy. While this is clearly the case, often things are less straightforward. For example, the Business Strategy may be in flux; this is particularly the case where a turn-around effort is required. Also, how the organisation uses data for competitive advantage may itself become a central pillar of its overall Business Strategy. Either way, rather than waiting for a Business Strategy to be finalised, there are a number of things that will need to be part of any Data Strategy: the establishment of a Data Function; a focus on making data fit-for-purpose to better support both information and insight; creation of consistent and business-focussed reporting and analysis; and the introduction or augmentation of Data Science capabilities. Many of these activities can help to shape a Business Strategy based on facts, not gut feel.

More broadly, any Data Strategy will include: a description of where the organisation is now (threats and opportunities); a vision for commercially advantageous future data capabilities; and a path for moving between the current and the future states. Rather than being PowerPoint-ware, such a strategy needs to be communicated assiduously and in a variety of ways so that it can be both widely understood and form a guide for data-centric activities across the organisation.
 
 
Summary
 
As per my other articles, the data capabilities that a modern organisation needs are broader and more detailed than those I have presented here. However, I have found this simple approach a useful place to start. It covers all the basic areas and provides a scaffold off of which more detailed capabilities may be hung.

The framework has been informed by what I have seen and done in a wide range of organisations, but of course it is not necessarily the final word. As always I would be interested in any general feedback and in any suggestions for improvement.
 


 
Notes

 
[1]
 
In passing, Anatomy is due for its second refresh, which will put greater emphasis on Data Science and its role as an indispensable part of a modern Data Function. Watch this space.
 
[2]
 
Though one would hope that a Data Strategy is also visible!
 
[3]
 
Though nowadays you hear “traditional” Analytics and “traditional” Big Data as well (on the latter see Sic Transit Gloria Magnorum Datorum), no doubt “traditional” Machine Learning will be with us at some point, if it isn’t here already.
 
[4]
 
See also Building Momentum – How to begin becoming a Data-driven Organisation.
 
[5]
 
I will be revisiting the idea of a Data Community in coming months, so again watch this space.
 
[6]
 
Most explicitly in my three-part series:

  1. Forming an Information Strategy: Part I – General Strategy
  2. Forming an Information Strategy: Part II – Situational Analysis
  3. Forming an Information Strategy: Part III – Completing the Strategy

 
peterjamesthomas.com

Another article from peterjamesthomas.com. The home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases.

 
 

A Retrospective of 2018’s Articles

A Review of 2018

This is the second year in which I have produced a retrospective of my blogging activity. As in 2017, I have failed miserably in my original objective of posting this early in January. Despite starting to write this piece on 18th December 2018, I have somehow sneaked into the second quarter before getting round to completing it. Maybe I will do better with 2019’s highlights!

Anyway, 2018 was a record-breaking year for peterjamesthomas.com. The site saw more traffic than in any other year since its inception; indeed hits were over a third higher than in any previous year. This increase was driven in part by the launch of my new Maths & Science section, articles from which claimed no fewer than 6 slots in the 2018 top 10 articles, when measured by hits [1]. Overall the total number of articles and new pages I published exceeded 2017’s figures to claim the second spot behind 2009; our first year in business.

As with every year, some of my work was viewed by tens of thousands of people, while other pieces received less attention. This is my selection of the articles that I enjoyed writing most, which does not always overlap with the most popular ones. Given the advent of the Maths & Science section, there are now seven categories into which I have split articles. These are as follows:

  1. General Data Articles
  2. Data Visualisation
  3. Statistics & Data Science
  4. CDO perspectives
  5. Programme Advice
  6. Analytics & Big Data
  7. Maths & Science

In each category, I will pick out one or two pieces which I feel are both representative of my overall content and worth a read. I would be more than happy to receive any feedback on my selections, or suggestions for different choices.

 
 
General Data Articles
 
A Brief History of Databases
 
February
A Brief History of Databases
An infographic spanning the history of Database technology from its early days in the 1960s to the landscape in the late 2010s..
 
Data Strategy Alarm Bell
 
July
How to Spot a Flawed Data Strategy
What alarm bells might alert you to problems with your Data Strategy; based on the author’s extensive experience of both developing Data Strategies and vetting existing ones.
 
Just the facts...
 
August
Fact-based Decision-making
Fact-based decision-making sounds like a no brainer, but just how hard is it to generate accurate facts?
 
 
Data Visualisation
 
Comparative Pie Charts
 
August
As Nice as Pie
A review of the humble Pie Chart, what it is good at, where it presents problems and some alternatives.
 
 
Statistics & Data Science
 
Data Science Challenges – It’s Deja Vu all over again!
 
August
Data Science Challenges – It’s Deja Vu all over again!
A survey of more than 10,000 Data Scientists highlights a set of problems that will seem very, very familiar to anyone working in the data space for a few years.
 
 
CDO Perspectives
 
The CDO Dilemma
 
February
The CDO – A Dilemma or The Next Big Thing?
Two Forbes articles argue different perspectives about the role of Chief Data Officer. The first (by Lauren deLisa Coleman) stresses its importance, the second (by Randy Bean) highlights some of the challenges that CDOs face.
 
2018 CDO Interviews
 
May onwards
The “In-depth” series of CDO interviews
Rather than a single article, this is a series of four talks with prominent CDOs, reflecting on the role and its challenges.
 
The Chief Marketing Officer and the CDO – A Modern Fable
 
October
The Chief Marketing Officer and the CDO – A Modern Fable
Discussing an alt-facts / “fake” news perspective on the Chief Data Officer role.
 
 
Programme Advice
 
Building Momentum
 
June
Building Momentum – How to begin becoming a Data-driven Organisation
Many companies want to become data driven, but getting started on the journey towards this goal can be tough. This article offers a framework for building momentum in the early stages of a Data Programme.
 
 
Analytics & Big Data
 
Enterprise Data Marketplace
 
January
Draining the Swamp
A review of some of the problems that can beset Data Lakes, together with some ideas about what to do to fix these from Dan Woods (Forbes), Paul Barth (Podium Data) and Dave Wells (Eckerson Group).
 
Sic Transit Gloria Mundi
 
February
Sic Transit Gloria Magnorum Datorum
In a world where the word has developed a very negative connotation, what’s so bad about being traditional?
 
Convergent Evolution of Data Architectures
 
August
Convergent Evolution
What the similarities (and differences) between Ichthyosaurs and Dolphins can tell us about different types of Data Architectures.
 
 
Maths & Science
 
Euler's Number
 
March
Euler’s Number
A long and winding road with the destination being what is probably the most important number in Mathematics.
 The Irrational Ratio  
August
The Irrational Ratio
The number π is surrounded by a fog of misunderstanding and even mysticism. This article seeks to address some common misconceptions about π, to show that in many ways it is just like any other number, but also to demonstrate some of its less common properties.
 
Emmy Noether
 
October
Glimpses of Symmetry, Chapter 24 – Emmy
One of the more recent chapters in my forthcoming book on Group Theory and Particle Physics. This focuses on the seminal contributions of Mathematician Emmy Noether to the fundamentals of Physics and the connection between Symmetry and Conservation Laws.

 
Notes

 
[1]
 

The 2018 Top Ten by Hits
1. The Irrational Ratio
2. A Brief History of Databases
3. Euler’s Number
4. The Data and Analytics Dictionary
5. The Equation
6. A Brief Taxonomy of Numbers
7. When I’m 65
8. How to Spot a Flawed Data Strategy
9. Building Momentum – How to begin becoming a Data-driven Organisation
10. The Anatomy of a Data Function – Part I

 
peterjamesthomas.com

Another article from peterjamesthomas.com. The home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases.

 
 

More Definitions in the Data and Analytics Dictionary

The Data and Analytics Dictionary

The peterjamesthomas.com Data and Analytics Dictionary is an active document and I will continue to issue revised versions of it periodically. Here are 20 new definitions, including the first from other contributors (thanks Tenny!):

  1. Artificial Intelligence Platform
  2. Data Asset
  3. Data Audit
  4. Data Classification
  5. Data Consistency
  6. Data Controls
  7. Data Curation (contributor: Tenny Thomas Soman)
  8. Data Democratisation
  9. Data Dictionary
  10. Data Engineering
  11. Data Ethics
  12. Data Integrity
  13. Data Lineage
  14. Data Platform
  15. Data Strategy
  16. Data Wrangling (contributor: Tenny Thomas Soman)
  17. Explainable AI (contributor: Tenny Thomas Soman)
  18. Information Governance
  19. Referential Integrity
  20. Testing Data (Training Data)

Remember that The Dictionary is a free resource and quoting contents (ideally with acknowledgement) and linking to its entries (via the buttons provided) are both encouraged.

People are now also welcome to contribute their own definitions. You can use the comments section here, or the dedicated form. Submissions will be subject to editorial review and are not guaranteed to be accepted.
 


 

From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

Offence, Defence and the Top Data Job

Offence and Defence - 2018 World Cup

Football [1] has been in the news rather a lot of late; apparently there is some competition or other going on in Russia [2]. Presumably it was this that brought to my mind the analogy sometimes applied to the data arena of offence and defence [3]. Defence brings to mind Data Governance, Master Data Management and Data Quality. Offence suggests Data Science, Machine Learning and Analytics. This is an analogy I have briefly touched on in these pages before [4]; here I want to expand on it.

Rather than Association Football, it was however the American version that first crossed my mind. In Gridiron, there are of course wholly separate teams for each of offence, defence, kicking and receiving, each filled with specialists. I would be happy to learn from readers about any counterexamples, but I struggle to think of any other sport that is like this [5]. In each of Association Football, both types of Rugby, Australian Rules Football and indeed Basketball, Baseball (see previous note [5]) Volleyball, Hockey, Ice Hockey, Lacrosse, Polo, Water Polo and Handball, the same players form both the offence and defence. Of course this is probably due to them being a bit less stop-start than American Football, offence can turn into defence in a split-second in some of them.

To stick with Football (I’m going to drop “Association” from here on in), while players may be designated as goalkeepers, defenders, mid-fielders, wingers and attackers (strikers), any player may be called on to defend or attack at any time [6]. Star strikers may need to make desperate tackles. Defenders (who tend to be taller) will be called up to try to turn corner kicks into goals. Even at the most basic level, the ball needs to be transferred from one end of the field to the other, which requires (absent the Goalkeeper simply taking what is known as route one – i.e. kicking it as far as they can towards the other goal) several players to pass the ball, control it and pass again. The whole team contributes.

I have written before about the nomenclature maze that often surrounds the Top Data Job [7] (see Further Reading at the end of the article). In some organisations the offence and defence aspects of the data arena are separate, in the sense that both are headed by someone who then reports into a non-data-specialist. For example a Chief Data Officer and a Chief Analytics Officer might both report to a Chief Operating Officer. This feels a bit like the American Football approach; separate teams to do separate things. I’m probably stretching the metaphor [8], but a problem that occurs to me is that – in business – the data offence and data defence teams will need to be on the field of play at the same time. Aren’t they going to get in each other’s way and end up duplicating activities? At the very least, they are going to need some robust rules about who does what and for these to be made very clear to the players. Also, ultimately, while both offence and defence teams in Gridiron will have their own coaches, these will report to a Head Coach; someone who presumably knows just a bit about American Football. I can’t think of any instances where an NFL team has no Head Coach and instead the next tier of staff all report to the owner.

Of course having multiple senior data roles reporting into different parts of the Executive may be fine and many organisations operate this way. However, again coming back to my sporting analogy, I prefer the approach adopted by Football, Rugby, Basketball and the rest. I like the idea of a single, cohesive Data Function, led by someone who is a data specialist, no matter what their job title might me. In most sports what seems to work well is a team in which people have roles, but in which there is cross-over and a need to just get done. I think this works for people involved in data work as well.

You wouldn’t have the Head of Tax and the Head of Financial Reporting both reporting to the CEO, that’s what CFOs are for (among other things). It should be the same in the data arena with the Top Data Job being just that, the one person ultimately accountable for both the control and leverage of data. I have made no secret of my opinion that this is the optimum approach. I think my view is supported by the overwhelming number of sports where offence and defence are functions of the same, cohesive team.
 


Further reading on this subject:


 
Notes

 
[1]
 
Association of course.
 
[2]
 
My winter team sport was always Rugby Football, of the Union variety. But – as is evident from quite a few articles on this site – for many years my spare time was mostly occupied by rock climbing and bouldering.

The day after England’s defeat at the hands of Croatia, the Polish guy I regularly buy my skinny flat white from offered his commiserations about yesterday. I was at a loss as to what he had done to me yesterday and he had to explain that he was referring to the World Cup. Not all Brit’s are Football fanatics.

 
[3]
 
Offense and defense for my wife and any other Americans reading.
 
[4]
 
This was as part of Alphabet Soup.
 
[5]
 
The only thing I could think of that was even in the same ballpark (pun intended) was the use of a designated hitter in some baseball leagues. Even then, the majority of the team have to field as well as bat.
 
[6]
 
There are indeed examples of Goalkeepers, the quintessential defensive player, scoring in International Football.
 
[7]
 
With acknowledgement to Peter Aiken.
 
[8]
 
For neither the first time, nor the last: e.g. A bad workman blames his [Business Intelligence] tools and Analogies.

 


From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

How to Spot a Flawed Data Strategy

Data Strategy Alarm Bell

I was recently preparing for an data-centric interview to be published as a podcast [watch this space]. A chat with the interviewer had prompted me to think about the question of how you can tell that there are issues with your Data Strategy. During the actual interview, we had so many things to talk about that we never got to this question. I thought that it was interesting enough to merit a mini-article, which is the genesis of this piece.


 
I have often had my services retained by organisations to develop a Data Strategy from scratch [1]. However, I have also gone into organisations who have an established Data Strategy, but are concerned about whether it is the right one and how it is being executed. In this latter case, my thought processes include the following.

The initial question to consider is, “are there any obvious alarm bells ringing?” Some alarm bells are ones that would apply to any strategy.

First of all, you need to be clear which problem you are addressing or which opportunity you want to seize (sometimes both). I have been brought into organisations where the Data Strategy consists of something like “build a Data Lake”. While I have nothing against data lakes myself, and indeed have helped to create them, the obvious question is “why does this organisation need a Data Lake?” If the answer is not something core to the operations of the organisation, it may well not need one.

Next implementing a technology is not a strategy. The data arena is unfortunately plagued by technology fan-boyism [2]. The latest and greatest visualisation tool is not going to sort out your data quality problems all by itself. Moving your back-end data platform from Oracle to Hadoop is not going to suddenly increase adoption of Analytics. All of these technologies have valuable parts to play, but the important thing to remember is that a Data Strategy must first and foremost be a business strategy. As such it must do at least one of: increase sales, optimise pricing, decrease costs, reduce risks or open new markets. A Data Lake will not in and of itself do any of these, what you chose to do with it may well contribute to many of these areas.

A further consideration is “what else is going on in the organisation?” This is important both in a business and a technological sense. If the organisation has just acquired another one, does the Data Strategy reflect this? If there is an ongoing Digital Transformation programme, then how does the Data Strategy align itself with this; is it an enabler, a Digital programme work-stream, or a stand-alone programme? In the same vein, it may well make sense to initially design the Data Strategy along purist lines (failing to do so at least initially may be a missed opportunity for radical change [3]), however there will then need to be an adjustment to take into account what else is going on in the organisation, its current situation and its culture.

Having introduced the word “culture”, the final observation is in this area. If the Data Strategy does not envisage impacting corporate culture (e.g. to shift it to focus more on the importance and potential value of data), then one must ask what are its chances of achieving anything tangible? All organisations are comprised of individuals and the best strategies both take this into account and were developed as a result of spending time thinking how best to influence people’s behaviour in a positive manner [4]. Absence of cultural and education / communication elements from a Data Strategy is more a 200 decibel claxon than a regular alarm bell.


 
Given I am generally brought in when organisations want to address a data problem or seize a data opportunity, I have to admit that I probably have a biassed set of experiences. Nevertheless one or more of the above issues has been present whenever I have started to examine an existing Data Strategy. In the (for me) hypothetical case where things are in better shape, then the next steps in evaluating a Data Strategy would be to get into the details of each of: the Data Strategy itself; the organisation and what makes it tick; and the people and personalities involved. However, if a Data Strategy does not suffer from any of the above flaws, it is already more sound than the majority of Data Strategies and the people who drew it up are to be congratulated.


 
If you would like help with your existing Data Strategy, or to kick-off the process of developing one from scratch, then please feel free to schedule a meeting.
 


Further reading on this subject:


 
Notes

 
[1]
 
A matrix of the data-centric (and other) areas I have been accountable for at various organisations appears here. Just scroll down to Data Strategy, which the is the second row in the Data-centric Work section.
 
[2]
 
And fan-girlism, though this seems to be less of a thing TBH.
 
[3]
 
See:

 
[4]
 
I cover the cultural aspects of Data-centric work in many places on this site, perhaps start with 20 Risks that Beset Data Programmes and Ever tried? Ever failed?, both of which also link back to my earlier (and still relevant) writing on this subject.

 


From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

Building Momentum – How to begin becoming a Data-driven Organisation

Building Momentum - Becoming a Data Driven Organisation

Larger, annotated PDF version (opens in a new tab)

Introduction

It is hard to find an organisation that does not aspire to being data-driven these days. While there is undoubtedly an element of me-tooism about some of these statements (or a fear of competitors / new entrants who may use their data better, gaining a competitive advantage), often there is a clear case for the better leverage of data assets. This may be to do with the stand-alone benefits of such an approach (enhanced understanding of customers, competitors, products / services etc. [1]), or as a keystone supporting a broader digital transformation.

However, in my experience, many organisations have much less mature ideas about how to achieve their data goals than they do about setting them. Given the lack of executive experience in data matters [2], it is not atypical that one of the large strategy consultants is engaged to shape a data strategy; one of the large management consultants is engaged to turn this into something executable and maybe to select some suitable technologies; and one of the large systems integrators (or increasingly off-shore organisations migrating up the food chain) is engaged to do the work, which by this stage normally relates to building technology capabilities, implementing a new architecture or some other technology-focussed programme.

Juggling Third Parties

Even if each of these partners does a great job – which one would hope they do at their price points – a few things invariably get lost along the way. These include:

  1. A data strategy that is closely coupled to the organisation’s actual needs rather than something more general.

    While there are undoubtedly benefits in adopting best practice for an industry, there is also something to be said for a more tailored approach, tied to business imperatives and which may have the possibility to define the new best practice. In some areas of business, it makes sense to take the tried and tested approach, to be a part of the herd. In others – and data is in my opinion one of these – taking a more innovative and distinctive path is more likely to lead to success.
     

  2. Connective tissue between strategy and execution.

    The distinctions between the three types of organisations I cite above are becoming more blurry (not least as each seeks to develop new revenue streams). This can lead to the strategy consultants developing plans, which get ripped up by the management consultants; the management consultants revisiting the initial strategy; the systems integrators / off-shorers replanning, or opening up technical and architecture discussions again. Of course this means the client paying at least twice for this type of work. What also disappears is the type of accountability that comes when the same people are responsible for developing a strategy, turning this into a practical plan and then executing this [3].
     

  3. Focus on the cultural aspects of becoming more data-driven.

    This is both one of the most important factors that determines success or failure [4] and something that – frankly because it is not easy to do – often falls by the wayside. By the time that the third external firm has been on-boarded, the name of the game is generally building something (e.g. a Data Lake, or an analytics platform) rather than the more human questions of who will use this, in what way, to achieve which business objectives.

Of course a way to address the above is to allocate some experienced people (internal or external, ideally probably a blend) who stay the course from development of data strategy through fleshing this out to execution and who – importantly – can also take a lead role in driving the necessary cultural change. It also makes sense to think about engaging organisations who are small enough to tailor their approach to your needs and who will not force a “cookie cutter” approach. I have written extensively about how – with the benefit of such people on board – to run such a data transformation programme [5]. Here I am going to focus on just one phase of such a programme and often the most important one; getting going and building momentum.


 
A Third Way

There are a couple of schools of thought here:

  1. Focus on laying solid data foundations and thus build data capabilities that are robust and will stand the test of time.
     
  2. Focus on delivering something ASAP in the data arena, which will build the case for further investment.

There are points in favour of both approaches and criticisms that can be made of each as well. For example, while the first approach will be necessary at some point (and indeed at a relatively early one) in order to sustain a transformation to a data-driven organisation, it obviously takes time and effort. Exclusive focus on this area can use up money, political capital and try the patience of sponsors. Few business initiatives will be funded for years if they do not begin to have at least some return relatively soon. This remains the case even if the benefits down the line are potentially great.

Equally, the second approach can seem very productive at first, but will generally end up trying to make a silk purse out of a sow’s ear [6]. Inevitably, without improvements to the underlying data landscape, limitations in the type of useful analytics that be carried out will be reached; sometimes sooner that might be thought. While I don’t generally refer to religious topics on this blog [7], the Parable of the Sower is apposite here. Focussing on delivering analytics without attending to the broader data landscape is indeed like the seed that fell on stony ground. The practice yields results that spring up, only to wilt when the sun gets hot, given that they have no real roots [8].

So what to do? Well, there is a Third Way. This involves blending both approaches. I tend to think of this in the following way:

Proportion of Point and Strategic Data Activities over Time

First of all, this is a cartoon, it is not intended to indicate actual percentages, just to illustrate a general trend. In real life, it is likely that you will cycle round multiple times and indeed have different parallel work-streams at different stages. The general points I am trying to convey with this diagram are:

  1. At the beginning of a data transformation programme, there should probably be more emphasis on interim delivery and tactical changes. However, imoportantly, there is never zero strategic work. As things progress, the emphasis should swing more to strategic, long-term work. But again, even in a mature programme, there is never zero tactical work. There can also of course be several iterations of such shifts in approach.
     
  2. Interim and tactical steps should relate to not just analytics, but also to making point fixes to the data landscape where possible. It is also important to kick off diagnostic work, which will establish how bad things are and also suggest areas which could be attacked sooner rather than later; this too can initially be done on a tactical basis and then made more robust later. In general, if you consider the span of strategic data work, it makes sense to kick off cut-down (and maybe drastically cut-down) versions of many activities early on.
     
  3. Importantly, the tactical and strategic work-streams should not be hermetically sealed. What you actually want is healthy interplay. Building some early, “quick and dirty” analytics may highlight areas that should be covered by a data audit, or where there are obvious weaknesses in a data architecture. Any data assets that are built on a more strategic basis should also be leveraged by tactical work, improving its utility and probably increasing its lifespan.

 
Interconnected Activities

At the beginning of this article, I present a diagram (repeated below) which covers three types of initial data activities, the sort of work that – if executed competently – can begin to generate momentum for a data programme. The exhibit also references Data Strategy.

Building Momentum - Becoming a Data Driven Organisation

Larger, annotated PDF version (opens in a new tab)

Let’s look at each of these four things in some more detail:

  1. Analytic Point Solutions

    Where data has historically been locked up in either hard-to-use repositories or in source systems themselves, liberating even a bit of it can be very helpful. This does not have to be with snazzy tools (unless you want to showcase the art of the possible). An anecdote might help to explain.

    At one organisation, they had existing reporting that was actually not horrendous, but it was hard to access, hard to parameterise and hard to do follow-on analysis on. I took it upon myself to run 30 plus reports on a weekly and monthly basis, download the contents to Excel, front these with some basic graphs and make these all available on an intranet. This meant that people from Country A or Department B could go straight to their figures rather than having to run fiddly reports. It also meant that they had an immediate visual overview – including some comparisons to prior periods and trends over time (which were not available in the original reports). Importantly, they also got a basic pivot table, which they could use to further examine what was going on. These simple steps (if a bit laborious for me) had a massive impact. I later replaced the Excel with pages I wrote in a new web-reporting tool we built in house. Ultimately, my team moved these to our strategic Analytics platform.

    This shows how point solutions can be very valuable and also morph into more strategic facilities over time.
     

  2. Data Process Improvements

    Data issues may be to do with a range of problems from poor validation in systems, to bad data integration, but immature data processes and insufficient education for data entry staff are often key conributors to overall problems. Identifying such issues and quantifying their impact should be the province of a Data Audit, which is something I would recommend considering early on in a data programme. Once more this can be basic at first, considering just superficial issues, and then expand over time.

    While fixing some data process problems and making a stepped change in data quality will both probably take time an effort, it may be possible to identify and target some narrower areas in which progress can be made quite quickly. It may be that one key attribute necessary for analysis is poorly entered and validated. Some good communications around this problem can help, better guidance for people entering it is also useful and some “quick and dirty” reporting highlighting problems and – hopefully – tracking improvement can make a difference quicker than you might expect [9].
     

  3. Data Architecture Enhancements

    Improving a Data Architecture sounds like a multi-year task and indeed it can often be just that. However, it may be that there are some areas where judicious application of limited resource and funds can make a difference early on. A team engaged in a data programme should seek out such opportunities and expect to devote time and attention to them in parallel with other work. Architectural improvements would be best coordinated with data process improvements where feasible.

    An example might be providing a web-based tool to look up valid codes for entry into a system. Of course it would be a lot better to embed this functionality in the system itself, but it may take many months to include this in a change schedule whereas the tool could be made available quickly. I have had some success with extending such a tool to allow users to build their own hierarchies, which can then be reflected in either point analytics solutions or more strategic offerings. It may be possible to later offer the tool’s functionality via web-services allowing it to be integrated into more than one system.
     

  4. Data Strategy

    I have written extensively about Data Strategy on this site [10]. What I wanted to cover here is the interplay between Data Strategy and some of the other areas I have just covered. It might be thought that Data Strategy is both carved on tablets of stone [11] and stands in splendid and theoretical isolation, but this should not ever be the case. The development of a Data Strategy should of course be informed by a situational analysis and a vision of “what good looks like” for an organisation. However, both of these things can be shaped by early tactical work. Taking cues from initial tactical work should lead to a more pragmatic strategy, more aligned to business realities.

    Work in each of the three areas itemised above can play an important role in shaping a Data Strategy and – as the Data Strategy matures – it can obviously guide interim work as well. This should be an iterative process with lots of feedback.


 
Closing Thoughts

I have captured the essence of these thoughts in the diagram above. The important things to take away are that in order to generate momentum, you need to start to do some stuff; to extend the physical metaphor, you have to start pushing. However, momentum is a vector quantity (it has a direction as well as a magnitude [12]) and building momentum is not a lot of use unless it is in the general direction in which you want to move; so push with some care and judgement. It is also useful to realise that – so long as your broad direction is OK – you can make refinements to your direction as you pick up speed.

The above thoughts are based on my experience in a range of organisations and I am confident that they can be applied anywhere, making allowance for local cultures of course. Once momentum is established, it still needs to be maintained (or indeed increased), but I find that getting the ball moving in the first place often presents the greatest challenge. My hope is that the framework I present here can help data practitioners to get over this initial hurdle and begin to really make a difference in their organisations.
 


Further reading on this subject:


 
Notes

 
[1]
 
Way back in 2009, I wrote about the benefits of leveraging data to provide enhanced information. The article in question was tited Measuring the benefits of Business Intelligence. Everything I mention remains valid today in 2018.
 
[2]
 
See also:

 
[3]
 
If I many be allowed to blow my own trumpet for a moment, I have developed data / information strategies for eight organisations, turned seven of these into a costed / planned programme and executed at least the first few phases of six of these. I have always found being a consistent presence through these phases has been beneficial to the organisations I was helping, as well as helping to reduce duplication of work.
 
[4]
 
See my, now rather venerable, trilogy about cultural change in data / information programmes:

  1. Marketing Change
  2. Education and cultural transformation and
  3. Sustaining Cultural Change

together with the rather more recent:

  1. 20 Risks that Beset Data Programmes and
  2. Ever tried? Ever failed?
 
[5]
 
See for example:

  1. Draining the Swamp
  2. Bumps in the Road and
  3. Ideas for avoiding Big Data failures and for dealing with them if they happen
 
[6]
 
Dictionary.com offers a nice explanation of this phrase..
 
[7]
 
I was raised a Catholic, but have been areligious for many years.
 
[8]
 
Much like x^2+x+1=0.

For anyone interested, the two roots of this polynomial are clearly:

-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\hspace{1mm}i\hspace{5mm}\text{and}\hspace{5mm}-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\hspace{1mm}i

neither of which is Real.

 
[9]
 
See my rather venerable article, Using BI to drive improvements in data quality, for a fuller treatment of this area.
 
[10]
 
For starters see:

  1. Forming an Information Strategy: Part I – General Strategy
  2. Forming an Information Strategy: Part II – Situational Analysis
  3. Forming an Information Strategy: Part III – Completing the Strategy

and also the Data Strategy segment of The Anatomy of a Data Function – Part I.

 
[11]
 
Tablet of Stone
 
[12]
 
See Glimpses of Symmetry, Chapter 15 – It’s Space Jim….

 


From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

Did GDPR highlight the robustness of your Data Architecture, the strength of your Data Governance and the fitness of your Data Strategy?

GDPR

So GDPR Day is upon us – the sun still came up and the Earth is still spinning (these facts may be related of course). I hope that most GDPR teams and the Executives who have relied upon their work were able to go to bed last night secure in the knowledge that a good job had been done and that their organisations and customers were protected. Undoubtedly, in coming days, there will be some stories of breaches of the regulations, maybe some will be high-profile and the fines salutary, but it seems that most people have got over the line, albeit often by Herculean efforts and sometimes by the skins of their teeth.

Does it have to be like this?

A well-thought-out Data Architecture embodying a business-focussed Data Strategy and intertwined with the right Data Governance, should combine to make responding to things like GDPR relatively straightforward. Were they in your organisation?

If instead GDPR compliance was achieved in spite of your Data Architectures, Governance and Strategies, then I suspect you are in the majority. Indeed years of essentially narrow focus on GDPR will have consumed resources that might otherwise have gone towards embedding the control and leverage of data into the organisation’s DNA.

Maybe now is a time for reflection. Will your Data Strategy, Data Governance and Data Architecture help you to comply with the next set of data-related regulations (and it is inevitable that there will be more), or will they hinder you, as will have been the case for many with GDPR?

If you feel that the answer to this question is that there are significant problems with how your organisation approaches data, then maybe now is the time to grasp the nettle. Having helped many companies to both develop and execute successful Data Strategies, you could start by reading my trilogy on creating an Information / Data Strategy:

  1. General Strategy
  2. Situational Analysis
  3. Completing the Strategy

I’m also more than happy to discuss your data problems and opportunities either formally or informally, so feel free to get in touch.
 
 


From: peterjamesthomas.com, home of The Data and Analytics Dictionary, The Anatomy of a Data Function and A Brief History of Databases

 

Sic Transit Gloria Magnorum Datorum

Sic transit gloria mundi

It happens to all of us eventually I suppose.

Just the other day, I heard someone referring to “traditional Big Data”. Since when did Big Data become “traditional”, I didn’t get the e-mail? Of course, in the technology field, the epithet “traditional” is code for “broken”, “no longer of any use” and – most damningly of all – “deeply uncool”. The term is widely used, whether – with this connotation – it is either helpful or accurate is perhaps a matter for debate. This usage makes me recall the rather silly debate about Analytics versus “traditional” Business Intelligence that occurred around 2009 [1].

By way of context, the person talking about “traditional Big Data” was referring to the difference between some of the original denizens of the Hadoop ecosystem and more recent offerings like Databricks or Beam. They also had in mind the various quasi-proprietary flavours of Big Data and/or Big Data plug-ins offered by (that word again) “traditional” vendors. In this sense, the usage is probably appropriate, albeit somewhat jarring. In the more pejorative sense I refer to above, “traditional” is somewhat misleading when applied to either Big Data or – in the author’s opinion – several of its precursors.

Shiny!

While we inhabit a world which places a premium on innovation, favouring the new and the shiny [2], traditional methods have much to offer. If something – a technique or technology – has achieved “traditional” status, it means that it has become part of how things are done. While shaking up the status quo can be beneficial, “traditional” approaches have the not insignificant benefit of having been tried and tested. “Traditional” data tools are ones that have survived some time and are still used. While not guaranteeing success, it should at least be possible to be successful with such tools because other people have done this before.

Maybe, several years after its move into the mainstream, Big Data has become “traditional”. However I would take this as meaning “fit for purpose”, “useful” and “still pretty cool”. Then I think the same about many of the technologies that were described as “traditional” in contrast to Big Data. As ever, the main things that lead to either success or failure in data-centric work [3] have very little to do with technology, be that traditional or à la mode.
 


 
Notes

 
[1]
 
If you have the stomach for it, see Business Analytics vs Business Intelligence and succeeding articles.
 
[2]
 
See also 2009’s The latest and greatest versus the valuable.
 
[3]
 
I itemise a few of these in last year’s 20 Risks that Beset Data Programmes.

 

From: peterjamesthomas.com, home of The Data and Analytics Dictionary

 

A Brief History of Databases

A Brief History of Databases

Larger PDF version (opens in a new tab)

The pace of change in the field of database technology seems to be constantly accelerating. No doubt in five year’s time [1], Big Data and the Hadoop suite [2] will seem to be as old-fashioned as earlier technologies can appear to some people nowadays. Today there is a great variety of database technologies that are in use in different organisations for different purposes. There are also a lot of vendors, some of whom have more than one type of database product. I think that it is worthwhile considering both the genesis of databases and some of the major developments that have occurred between then and now.

The infographic appearing at the start of this article seeks to provide just such a perspective. It presents an abridged and simplified perspective on the history of databases from the 1960s to the late 2010s. It is hard to make out the text in the above diagram, so I would recommend that readers click on the link provided in order to view a much larger version with bigger and more legible text.

The infographic references a number of terms. Below I provide links to definitions of several of these, which are taken from The Data and Analytics Dictionary. The list progresses from the top of the diagram downwards, but starts with a definition of “database” itself:

To my mind, it is interesting to see just how long we have been grappling with the best way to set up databases. Also of note is that some of the Big Data technologies are actually relatively venerable, dating to the mid-to-late 2000s (some elements are even older, consisting of techniques for handling flat files on UNIX or Mainframe computers back in the day).

I hope that both the infographic and the definitions provided above contribute to the understanding of the history of databases and also that they help to elucidate the different types of database that are available to organisations today.
 


 
Acknowledgements

The following people’s input is acknowledged on the document itself, but my thanks are also repeated here:

Of course any errors and omissions remain the responsibility of the author.


 
Notes

 
[1]
 
If not significantly before then.
 
[2]
 
One of J K Rowling’s lesser-known works.

From: peterjamesthomas.com, home of The Data and Analytics Dictionary and The Anatomy of a Data Function