A Retrospective of 2017’s Articles

A Review of 2017

This article was originally intended for publication late in the year it reviews, but, as they [1] say, the best-laid schemes o’ mice an’ men gang aft agley…

In 2017 I wrote more articles [2] than in any year since 2009, which was the first full year of this site’s existence. Some were viewed by thousands of people, others received less attention. Here I am going to ignore the metric of popular acclaim and instead highlight a few of the articles that I enjoyed writing most, or sometimes re-reading a few months later [3]. Given the breadth of subject matter that appears on peterjamesthomas.com, I have split this retrospective into six areas, which are presented in decreasing order of the number of 2017 articles I wrote in each. These are as follows:

  1. General Data Articles
  2. Data Visualisation
  3. Statistics & Data Science
  4. CDO perspectives
  5. Programme Advice
  6. Analytics & Big Data

In each category, I will pick out two or three of pieces which I feel are both representative of my overall content and worth a read. I would be more than happy to receive any feedback on my selections, or suggestions for different choices.

 
 
General Data Articles
 
The Data & Analytics Dictionary
 
August
The Data and Analytics Dictionary
My attempt to navigate the maze of data and analytics terminology. Everything from Algorithm to Web Analytics.
 
The Anatomy of a Data Function
 
November & December
The Anatomy of a Data Function: Part I, Part II and Part III
Three articles focussed on the structure and components of a modern Data Function and how its components interact with both each other and the wider organisation in order to support business goals.
 
 
Data Visualisation
 
Nucleosynthesis and Data Visualisation
 
January
Nucleosynthesis and Data Visualisation
How one of the most famous scientific data visualisations, the Periodic Table, has been repurposed to explain where the atoms we are all made of come from via the processes of nucleosynthesis.
 
Hurricanes and Data Visualisation
 
September & October
Hurricanes and Data Visualisation: Part I – Rainbow’s Gravity and Part II – Map Reading
Two articles on how Data Visualisation is used in Meteorology. Part I provides a worked example illustrating some of the problems that can arise when adopting a rainbow colour palette in data visualisation. Part II grapples with hurricane prediction and covers some issues with data visualisations that are intended to convey safety information to the public.
 
 
Statistics & Data Science
 
Toast
 
February
Toast
What links Climate Change, the Manhattan Project, Brexit and Toast? How do these relate to the public’s trust in Science? What does this mean for Data Scientists?
Answers provided by Nature, The University of Cambridge and the author.
 
How to be Surprisingly Popular
 
February
How to be Surprisingly Popular
The wisdom of the crowd relies upon essentially democratic polling of a large number of respondents; an approach that has several shortcomings, not least the lack of weight attached to people with specialist knowledge. The Surprisingly Popular algorithm addresses these shortcomings and so far has out-performed existing techniques in a range of studies.
 
A Nobel Laureate’s views on creating Meaning from Data
 
October
A Nobel Laureate’s views on creating Meaning from Data
The 2017 Nobel Prize for Chemistry was awarded to Structural Biologist Richard Henderson and two other co-recipients. What can Machine Learning practitioners learn from Richard’s observations about how to generate images from Cryo-Electron Microscopy data?
 
 
CDO Perspectives
 
Alphabet Soup
 
January
Alphabet Soup
Musings on the overlapping roles of Chief Analytics Officer and Chief Data Officer and thoughts on whether there should be just one Top Data Job in an organisation.
 
A Sweeter Spot for the CDO?
 
February
A Sweeter Spot for the CDO?
An extension of my concept of the Chief Data Officer sweet spot, inspired by Bruno Aziza of AtScale.
 
A truth universally acknowledged…
 
September
A truth universally acknowledged…
Many Chief Data Officer job descriptions have a list of requirements that resemble Swiss Army Knives. This article argues that the CDO must be the conductor of an orchestra, not someone who is a virtuoso in every single instrument.
 
 
Programme Advice
 
Bumps in the Road
 
January
Bumps in the Road
What the aftermath of repeated roadworks can tell us about the potentially deleterious impact of Change Programmes on Data Landscapes.
 
20 Risks that Beset Data Programmes
 
February
20 Risks that Beset Data Programmes
A review of 20 risks that can plague data programmes. How effectively these are managed / mitigated can make or break your programme.
 
Ideas for avoiding Big Data failures and for dealing with them if they happen
 
March
Ideas for avoiding Big Data failures and for dealing with them if they happen
Paul Barsch (EY & Teradata) provides some insight into why Big Data projects fail, what you can do about this and how best to treat any such projects that head off the rails. With additional contributions from Big Data gurus Albert Einstein, Thomas Edison and Samuel Beckett.
 
 
Analytics & Big Data
 
Bigger and Better (Data)?
 
February
Bigger and Better (Data)?
Some examples of where bigger data is not necessarily better data. Provided by Bill Vorhies and Larry Greenemeier .
 
Elephants’ Graveyard?
 
March
Elephants’ Graveyard?
Thoughts on trends in interest in Hadoop and Spark, featuring George Hill, James Kobielus, Kashif Saiyed and Martyn Richard Jones, together with the author’s perspective on the importance of technology in data-centric work.
 
 
and Finally…

I would like to close this review of 2017 with a final article, one that somehow defies classification:

 
25 Indispensable Business Terms
 
April
25 Indispensable Business Terms
An illustrated Buffyverse take on Business gobbledygook – What would Buffy do about thinking outside the box? To celebrate 20 years of Buffy the Vampire Slayer and 1st April 2017.

 
Notes

 
[1]
 
“They” here obviously standing for Robert Burns.
 
[2]
 
Thirty-four articles and one new page.
 
[3]
 
Of course some of these may also have been popular, I’m not being masochistic here!

 

From: peterjamesthomas.com, home of The Data and Analytics Dictionary

 

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s